双分量 BKP 层次结构的对称性、行波和自相似解

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
J. Mohammed Zubair Ahamed, R. Sinuvasan
{"title":"双分量 BKP 层次结构的对称性、行波和自相似解","authors":"J. Mohammed Zubair Ahamed,&nbsp;R. Sinuvasan","doi":"10.1016/j.aej.2024.10.063","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the two-component BKP hierarchy equation for its Lie point symmetries. To obtain a complete classification of the group-invariant solution, we derive the one-dimensional optimal system of subalgebras of <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub><mrow><mo>(</mo><mi>D</mi><msub><mrow><mo>⨂</mo></mrow><mrow><mi>s</mi></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>. By employing those subalgebras, we construct the invariant solutions which are represented through Weierstrass elliptic functions, Jacobi elliptic functions, and soliton solutions. Also, we analyse the existence of a bounded travelling-wave solution for the equation. Moreover, through the utilization of scale-invariant symmetry, we derive a self-similar solution. Additionally, by conducting singularity analysis, the solution can be expressed in the form of a right Painlevè series.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"111 ","pages":"Pages 601-609"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetries, travelling-wave and self-similar solutions of two-component BKP hierarchy\",\"authors\":\"J. Mohammed Zubair Ahamed,&nbsp;R. Sinuvasan\",\"doi\":\"10.1016/j.aej.2024.10.063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the two-component BKP hierarchy equation for its Lie point symmetries. To obtain a complete classification of the group-invariant solution, we derive the one-dimensional optimal system of subalgebras of <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub><mrow><mo>(</mo><mi>D</mi><msub><mrow><mo>⨂</mo></mrow><mrow><mi>s</mi></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>. By employing those subalgebras, we construct the invariant solutions which are represented through Weierstrass elliptic functions, Jacobi elliptic functions, and soliton solutions. Also, we analyse the existence of a bounded travelling-wave solution for the equation. Moreover, through the utilization of scale-invariant symmetry, we derive a self-similar solution. Additionally, by conducting singularity analysis, the solution can be expressed in the form of a right Painlevè series.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"111 \",\"pages\":\"Pages 601-609\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016824012201\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824012201","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了其列点对称的双分量 BKP 层次方程。为了获得组不变解的完整分类,我们推导了 A3,3(D⨂sT2)子代数的一维最优系统。通过使用这些子代数,我们构建了不变解,这些不变解通过魏尔斯特拉斯椭圆函数、雅可比椭圆函数和孤子解来表示。此外,我们还分析了该方程有界行波解的存在性。此外,通过利用尺度不变对称性,我们得出了自相似解。此外,通过奇异性分析,解可以用右潘列韦数列的形式表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetries, travelling-wave and self-similar solutions of two-component BKP hierarchy
We investigate the two-component BKP hierarchy equation for its Lie point symmetries. To obtain a complete classification of the group-invariant solution, we derive the one-dimensional optimal system of subalgebras of A3,3(DsT2). By employing those subalgebras, we construct the invariant solutions which are represented through Weierstrass elliptic functions, Jacobi elliptic functions, and soliton solutions. Also, we analyse the existence of a bounded travelling-wave solution for the equation. Moreover, through the utilization of scale-invariant symmetry, we derive a self-similar solution. Additionally, by conducting singularity analysis, the solution can be expressed in the form of a right Painlevè series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信