智能监测 3D 打印食品的后处理特性:利用近红外和多元分析关注淀粉-面筋混合物的发酵过程

IF 5.3 2区 农林科学 Q1 ENGINEERING, CHEMICAL
Qian Jiang , Yanru Bao , Te Ma , Satoru Tsuchikawa , Tetsuya Inagaki , Han Wang , Hao Jiang
{"title":"智能监测 3D 打印食品的后处理特性:利用近红外和多元分析关注淀粉-面筋混合物的发酵过程","authors":"Qian Jiang ,&nbsp;Yanru Bao ,&nbsp;Te Ma ,&nbsp;Satoru Tsuchikawa ,&nbsp;Tetsuya Inagaki ,&nbsp;Han Wang ,&nbsp;Hao Jiang","doi":"10.1016/j.jfoodeng.2024.112357","DOIUrl":null,"url":null,"abstract":"<div><div>The production of three-dimensional (3D)-printed food products requires not only optimal 3D-printing adaptability but also appropriate post-processing characteristics. This study aimed to use near infrared (NIR) spectroscopy to predict the rheological properties of 3D-printed dough, enabling intelligent monitoring of the dough's fermentation process. Utilizing support vector machine (SVM) classification model, the fermentation stages can be classified as under-fermentation, complete fermentation, and over-fermentation. Employing preprocessing methods with Synergy Interval Partial Least Square-Competitive Adaptive Reweighted Sampling (SIPLS-CARS) algorithm, 27, 39, 23, and 27 key wavelengths were filtered from the raw NIR spectral data, corresponding to the prediction of storage modulus (G′), loss modulus (G″), complex viscosity (η∗), and loss factor (tan δ), respectively. Quantitatively, SVM (Support Vector Machine) regression outperformed Partial Least Squares (PLS) with Rc<sup>2</sup> values (0.95, 0.94, 0.94) and Rp<sup>2</sup> values (0.93, 0.93, 0.94) for G′, G″, and η∗. NIR spectra-based predictive models demonstrated superior performance compared to rheo-fermentation properties models. In summary, these findings show the potential of NIR spectroscopy as a rapid tool for predicting the fermentation progress of 3D-printed doughs.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"388 ","pages":"Article 112357"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent monitoring of post-processing characteristics in 3D-printed food products: A focus on fermentation process of starch-gluten mixture using NIR and multivariate analysis\",\"authors\":\"Qian Jiang ,&nbsp;Yanru Bao ,&nbsp;Te Ma ,&nbsp;Satoru Tsuchikawa ,&nbsp;Tetsuya Inagaki ,&nbsp;Han Wang ,&nbsp;Hao Jiang\",\"doi\":\"10.1016/j.jfoodeng.2024.112357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The production of three-dimensional (3D)-printed food products requires not only optimal 3D-printing adaptability but also appropriate post-processing characteristics. This study aimed to use near infrared (NIR) spectroscopy to predict the rheological properties of 3D-printed dough, enabling intelligent monitoring of the dough's fermentation process. Utilizing support vector machine (SVM) classification model, the fermentation stages can be classified as under-fermentation, complete fermentation, and over-fermentation. Employing preprocessing methods with Synergy Interval Partial Least Square-Competitive Adaptive Reweighted Sampling (SIPLS-CARS) algorithm, 27, 39, 23, and 27 key wavelengths were filtered from the raw NIR spectral data, corresponding to the prediction of storage modulus (G′), loss modulus (G″), complex viscosity (η∗), and loss factor (tan δ), respectively. Quantitatively, SVM (Support Vector Machine) regression outperformed Partial Least Squares (PLS) with Rc<sup>2</sup> values (0.95, 0.94, 0.94) and Rp<sup>2</sup> values (0.93, 0.93, 0.94) for G′, G″, and η∗. NIR spectra-based predictive models demonstrated superior performance compared to rheo-fermentation properties models. In summary, these findings show the potential of NIR spectroscopy as a rapid tool for predicting the fermentation progress of 3D-printed doughs.</div></div>\",\"PeriodicalId\":359,\"journal\":{\"name\":\"Journal of Food Engineering\",\"volume\":\"388 \",\"pages\":\"Article 112357\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0260877424004230\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877424004230","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

生产三维(3D)打印食品不仅需要最佳的 3D 打印适应性,还需要适当的后处理特性。本研究旨在利用近红外光谱预测三维打印面团的流变特性,从而实现对面团发酵过程的智能监控。利用支持向量机(SVM)分类模型,可将发酵阶段分为发酵不足、完全发酵和过度发酵。利用协同区间部分最小平方-竞争性自适应重加权采样(SIPLS-CARS)算法进行预处理,从原始近红外光谱数据中分别筛选出 27、39、23 和 27 个关键波长,分别对应于储藏模量(G′)、损耗模量(G″)、复粘度(η∗)和损耗因子(tan δ)的预测。定量分析结果表明,SVM(支持向量机)回归优于偏最小二乘法(PLS),G′、G″和η∗的 Rc2 值分别为 0.95、0.94、0.94,Rp2 值分别为 0.93、0.93、0.94。与流变发酵特性模型相比,基于近红外光谱的预测模型表现出更优越的性能。总之,这些研究结果表明了近红外光谱作为预测三维打印面团发酵进度的快速工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent monitoring of post-processing characteristics in 3D-printed food products: A focus on fermentation process of starch-gluten mixture using NIR and multivariate analysis
The production of three-dimensional (3D)-printed food products requires not only optimal 3D-printing adaptability but also appropriate post-processing characteristics. This study aimed to use near infrared (NIR) spectroscopy to predict the rheological properties of 3D-printed dough, enabling intelligent monitoring of the dough's fermentation process. Utilizing support vector machine (SVM) classification model, the fermentation stages can be classified as under-fermentation, complete fermentation, and over-fermentation. Employing preprocessing methods with Synergy Interval Partial Least Square-Competitive Adaptive Reweighted Sampling (SIPLS-CARS) algorithm, 27, 39, 23, and 27 key wavelengths were filtered from the raw NIR spectral data, corresponding to the prediction of storage modulus (G′), loss modulus (G″), complex viscosity (η∗), and loss factor (tan δ), respectively. Quantitatively, SVM (Support Vector Machine) regression outperformed Partial Least Squares (PLS) with Rc2 values (0.95, 0.94, 0.94) and Rp2 values (0.93, 0.93, 0.94) for G′, G″, and η∗. NIR spectra-based predictive models demonstrated superior performance compared to rheo-fermentation properties models. In summary, these findings show the potential of NIR spectroscopy as a rapid tool for predicting the fermentation progress of 3D-printed doughs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Food Engineering
Journal of Food Engineering 工程技术-工程:化工
CiteScore
11.80
自引率
5.50%
发文量
275
审稿时长
24 days
期刊介绍: The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including: Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes. Accounts of food engineering achievements are of particular value.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信