关于带有卢奇科内核的一般节制分数微积分

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Furqan Hussain, Mujeeb ur Rehman
{"title":"关于带有卢奇科内核的一般节制分数微积分","authors":"Furqan Hussain,&nbsp;Mujeeb ur Rehman","doi":"10.1016/j.cam.2024.116339","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we construct the <span><math><mi>n</mi></math></span>-fold <span><math><mi>ψ</mi></math></span>-fractional integrals and derivatives and study their properties. This construction is purely based on the approach proposed by Luchko (2021). The fundamental theorems of fractional calculus are formulated and proved for the proposed <span><math><mi>n</mi></math></span>-fold <span><math><mi>ψ</mi></math></span>-fractional integrals and derivatives. On the other hand, a suitable generalization of the Luchko condition is presented to discuss the <span><math><mi>ψ</mi></math></span>-tempered fractional calculus of arbitrary order. We introduce an important class of kernels that satisfy this condition. For the <span><math><mi>ψ</mi></math></span>-tempered fractional integrals and derivatives of arbitrary order, two fundamental theorems are proven, along with a relation between Riemann–Liouville and Caputo derivatives. Finally, Cauchy problems for the fractional differential equations with the <span><math><mi>ψ</mi></math></span>-tempered fractional derivatives are solved.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"458 ","pages":"Article 116339"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On general tempered fractional calculus with Luchko kernels\",\"authors\":\"Furqan Hussain,&nbsp;Mujeeb ur Rehman\",\"doi\":\"10.1016/j.cam.2024.116339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we construct the <span><math><mi>n</mi></math></span>-fold <span><math><mi>ψ</mi></math></span>-fractional integrals and derivatives and study their properties. This construction is purely based on the approach proposed by Luchko (2021). The fundamental theorems of fractional calculus are formulated and proved for the proposed <span><math><mi>n</mi></math></span>-fold <span><math><mi>ψ</mi></math></span>-fractional integrals and derivatives. On the other hand, a suitable generalization of the Luchko condition is presented to discuss the <span><math><mi>ψ</mi></math></span>-tempered fractional calculus of arbitrary order. We introduce an important class of kernels that satisfy this condition. For the <span><math><mi>ψ</mi></math></span>-tempered fractional integrals and derivatives of arbitrary order, two fundamental theorems are proven, along with a relation between Riemann–Liouville and Caputo derivatives. Finally, Cauchy problems for the fractional differential equations with the <span><math><mi>ψ</mi></math></span>-tempered fractional derivatives are solved.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 116339\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005879\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005879","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们构建了 n 重 ψ 分积分和导数,并研究了它们的性质。这一构造完全基于 Luchko(2021)提出的方法。针对所提出的 n 折 ψ-分式积分和导数,提出并证明了分式微积分的基本定理。另一方面,提出了卢奇科条件的适当广义化,以讨论任意阶的ψ温带分数微积分。我们介绍了满足这一条件的一类重要的核。对于任意阶的ψ回火分数积分和导数,证明了两个基本定理,以及黎曼-刘维尔导数和卡普托导数之间的关系。最后,还求解了带有 ψ 调和分数导数的分数微分方程的 Cauchy 问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On general tempered fractional calculus with Luchko kernels
In this paper, we construct the n-fold ψ-fractional integrals and derivatives and study their properties. This construction is purely based on the approach proposed by Luchko (2021). The fundamental theorems of fractional calculus are formulated and proved for the proposed n-fold ψ-fractional integrals and derivatives. On the other hand, a suitable generalization of the Luchko condition is presented to discuss the ψ-tempered fractional calculus of arbitrary order. We introduce an important class of kernels that satisfy this condition. For the ψ-tempered fractional integrals and derivatives of arbitrary order, two fundamental theorems are proven, along with a relation between Riemann–Liouville and Caputo derivatives. Finally, Cauchy problems for the fractional differential equations with the ψ-tempered fractional derivatives are solved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信