Mara Neudert , Stefanie Arndt , Stefan Hendricks , Mario Hoppmann , Markus Schulze , Christian Haas
{"title":"利用多频电磁感应探测改进冰下血小板层测绘","authors":"Mara Neudert , Stefanie Arndt , Stefan Hendricks , Mario Hoppmann , Markus Schulze , Christian Haas","doi":"10.1016/j.jappgeo.2024.105540","DOIUrl":null,"url":null,"abstract":"<div><div>In Antarctica, sub-ice platelet layers (SIPL) accumulate beneath sea ice where ice crystals emerge from adjacent ice shelf cavities, serving as a unique habitat and indicator of ice-ocean interaction. Atka Bay in the eastern Weddell Sea, close to the German overwintering base Neumayer Station III, is well known for hosting a SIPL linked to ice shelf water outflow from beneath the Ekström Ice Shelf. This study presents a comprehensive analysis of an extensive multi-frequency electromagnetic (EM) induction sounding dataset in Atka Bay. Employing an open-source inversion scheme, the dataset was inverted to determine fast ice and platelet layer thicknesses along with their electrical conductivities. From electrical conductivity of the SIPL, we derive the SIPL solid fraction. Our results demonstrate the capability of obtaining high-resolution maps of SIPL thickness over extensive areas, providing unprecedented insights into accumulation patterns and identifying regions of ice-shelf water outflow in Atka Bay. Calibration in a zero-conductivity environment on the ice shelf proves effective, reducing logistical efforts for correcting electronic offsets and drift. Moreover, we demonstrate that both instrument noise and motion noise are sufficiently low to accurately determine SIPL thickness, with uncertainties within the decimeter range. Notably, this investigation is the first to cover the entirety of Atka Bay, including ice shelf fringes, overcoming limitations of prior studies. Our approach represents a significant advancement in studying ocean/ice-shelf interactions using non-destructive EM methods, emphasizing the potential to assess future changes in sub-ice shelf processes. In the future, the adaptation of this method to airborne multi-frequency EM measurements using drones or aircraft has the potential to further extend spatial coverage.</div></div>","PeriodicalId":54882,"journal":{"name":"Journal of Applied Geophysics","volume":"230 ","pages":"Article 105540"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved sub-ice platelet layer mapping with multi-frequency EM induction sounding\",\"authors\":\"Mara Neudert , Stefanie Arndt , Stefan Hendricks , Mario Hoppmann , Markus Schulze , Christian Haas\",\"doi\":\"10.1016/j.jappgeo.2024.105540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In Antarctica, sub-ice platelet layers (SIPL) accumulate beneath sea ice where ice crystals emerge from adjacent ice shelf cavities, serving as a unique habitat and indicator of ice-ocean interaction. Atka Bay in the eastern Weddell Sea, close to the German overwintering base Neumayer Station III, is well known for hosting a SIPL linked to ice shelf water outflow from beneath the Ekström Ice Shelf. This study presents a comprehensive analysis of an extensive multi-frequency electromagnetic (EM) induction sounding dataset in Atka Bay. Employing an open-source inversion scheme, the dataset was inverted to determine fast ice and platelet layer thicknesses along with their electrical conductivities. From electrical conductivity of the SIPL, we derive the SIPL solid fraction. Our results demonstrate the capability of obtaining high-resolution maps of SIPL thickness over extensive areas, providing unprecedented insights into accumulation patterns and identifying regions of ice-shelf water outflow in Atka Bay. Calibration in a zero-conductivity environment on the ice shelf proves effective, reducing logistical efforts for correcting electronic offsets and drift. Moreover, we demonstrate that both instrument noise and motion noise are sufficiently low to accurately determine SIPL thickness, with uncertainties within the decimeter range. Notably, this investigation is the first to cover the entirety of Atka Bay, including ice shelf fringes, overcoming limitations of prior studies. Our approach represents a significant advancement in studying ocean/ice-shelf interactions using non-destructive EM methods, emphasizing the potential to assess future changes in sub-ice shelf processes. In the future, the adaptation of this method to airborne multi-frequency EM measurements using drones or aircraft has the potential to further extend spatial coverage.</div></div>\",\"PeriodicalId\":54882,\"journal\":{\"name\":\"Journal of Applied Geophysics\",\"volume\":\"230 \",\"pages\":\"Article 105540\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926985124002568\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926985124002568","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Improved sub-ice platelet layer mapping with multi-frequency EM induction sounding
In Antarctica, sub-ice platelet layers (SIPL) accumulate beneath sea ice where ice crystals emerge from adjacent ice shelf cavities, serving as a unique habitat and indicator of ice-ocean interaction. Atka Bay in the eastern Weddell Sea, close to the German overwintering base Neumayer Station III, is well known for hosting a SIPL linked to ice shelf water outflow from beneath the Ekström Ice Shelf. This study presents a comprehensive analysis of an extensive multi-frequency electromagnetic (EM) induction sounding dataset in Atka Bay. Employing an open-source inversion scheme, the dataset was inverted to determine fast ice and platelet layer thicknesses along with their electrical conductivities. From electrical conductivity of the SIPL, we derive the SIPL solid fraction. Our results demonstrate the capability of obtaining high-resolution maps of SIPL thickness over extensive areas, providing unprecedented insights into accumulation patterns and identifying regions of ice-shelf water outflow in Atka Bay. Calibration in a zero-conductivity environment on the ice shelf proves effective, reducing logistical efforts for correcting electronic offsets and drift. Moreover, we demonstrate that both instrument noise and motion noise are sufficiently low to accurately determine SIPL thickness, with uncertainties within the decimeter range. Notably, this investigation is the first to cover the entirety of Atka Bay, including ice shelf fringes, overcoming limitations of prior studies. Our approach represents a significant advancement in studying ocean/ice-shelf interactions using non-destructive EM methods, emphasizing the potential to assess future changes in sub-ice shelf processes. In the future, the adaptation of this method to airborne multi-frequency EM measurements using drones or aircraft has the potential to further extend spatial coverage.
期刊介绍:
The Journal of Applied Geophysics with its key objective of responding to pertinent and timely needs, places particular emphasis on methodological developments and innovative applications of geophysical techniques for addressing environmental, engineering, and hydrological problems. Related topical research in exploration geophysics and in soil and rock physics is also covered by the Journal of Applied Geophysics.