{"title":"通过邻接线性算子求解具有混合边界条件的静态线性弹性的应力解","authors":"Ivan Gudoshnikov, Michal Křížek","doi":"10.1016/j.jmaa.2024.128986","DOIUrl":null,"url":null,"abstract":"<div><div>We revisit stress problems in linear elasticity to provide a perspective from the geometrical and functional-analytic points of view. For the static stress problem of linear elasticity with mixed boundary conditions we present the associated pair of unbounded adjoint operators. Such a pair is explicitly written for the first time, despite the abundance of the literature on the topic. We use it to find the stress solution as an intersection of the (affinely translated) fundamental subspaces of the adjoint operators. In particular, we treat the equilibrium equation in the operator form, which involves the spaces of traces on a part of the boundary, known as the Lions-Magenes spaces. Our analysis of the pair of adjoint operators for the problem with mixed boundary conditions relies on the properties of the analogous pair of operators for the problem with the displacement boundary conditions, which we also include in the paper.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stress solution of static linear elasticity with mixed boundary conditions via adjoint linear operators\",\"authors\":\"Ivan Gudoshnikov, Michal Křížek\",\"doi\":\"10.1016/j.jmaa.2024.128986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We revisit stress problems in linear elasticity to provide a perspective from the geometrical and functional-analytic points of view. For the static stress problem of linear elasticity with mixed boundary conditions we present the associated pair of unbounded adjoint operators. Such a pair is explicitly written for the first time, despite the abundance of the literature on the topic. We use it to find the stress solution as an intersection of the (affinely translated) fundamental subspaces of the adjoint operators. In particular, we treat the equilibrium equation in the operator form, which involves the spaces of traces on a part of the boundary, known as the Lions-Magenes spaces. Our analysis of the pair of adjoint operators for the problem with mixed boundary conditions relies on the properties of the analogous pair of operators for the problem with the displacement boundary conditions, which we also include in the paper.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009089\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009089","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Stress solution of static linear elasticity with mixed boundary conditions via adjoint linear operators
We revisit stress problems in linear elasticity to provide a perspective from the geometrical and functional-analytic points of view. For the static stress problem of linear elasticity with mixed boundary conditions we present the associated pair of unbounded adjoint operators. Such a pair is explicitly written for the first time, despite the abundance of the literature on the topic. We use it to find the stress solution as an intersection of the (affinely translated) fundamental subspaces of the adjoint operators. In particular, we treat the equilibrium equation in the operator form, which involves the spaces of traces on a part of the boundary, known as the Lions-Magenes spaces. Our analysis of the pair of adjoint operators for the problem with mixed boundary conditions relies on the properties of the analogous pair of operators for the problem with the displacement boundary conditions, which we also include in the paper.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.