关于一些非线性热方程的 I 型炸裂与势能

IF 1.2 3区 数学 Q1 MATHEMATICS
Gui-Chun Jiang , Yu-Ying Wang , Gao-Feng Zheng
{"title":"关于一些非线性热方程的 I 型炸裂与势能","authors":"Gui-Chun Jiang ,&nbsp;Yu-Ying Wang ,&nbsp;Gao-Feng Zheng","doi":"10.1016/j.jmaa.2024.128990","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we are concerned with the following initial-boundary value problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>Q</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mo>∂</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>p</mi><mo>≥</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>:</mo><mo>=</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span>, <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>)</mo></math></span>, and <span><math><mi>Q</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>R</mi><mo>]</mo><mo>)</mo></math></span>, <span><math><mn>0</mn><mo>&lt;</mo><munder><mrow><mi>C</mi></mrow><mo>_</mo></munder><mo>≤</mo><mi>Q</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>≤</mo><mover><mrow><mi>C</mi></mrow><mo>‾</mo></mover><mo>&lt;</mo><mo>∞</mo><mo>,</mo><mspace></mspace><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>r</mi><mo>)</mo><mo>≤</mo><mn>0</mn></math></span>. We extend the asymptotic behavior results, which is well-known when <em>Q</em> is constant according to Matano-Merle (cf. <span><span>[25]</span></span>), for the blow-up solutions. More precisely, we show that when <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>≤</mo><mi>p</mi><mo>&lt;</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, the blowup of radial solution to this problem is always of Type I. This result partially generalizes the conclusions in <span><span>[25]</span></span> for <span><math><mi>Q</mi><mo>≡</mo><mn>1</mn></math></span>. This extension is nontrivial due to the appearance of <em>Q</em>. The quasi-monotonicity formula established by the third author and Cheng in <span><span>[8]</span></span> allows us to use an energy method to get a priori estimates on the rescaled solutions. The contraction mapping principle shows the existence of singular stationary solutions to an associated elliptic equation with a potential. In the end, the properties of zero number for solutions lead to the nonexistence of type II singularity for the problem.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 128990"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On type I blowup of some nonlinear heat equations with a potential\",\"authors\":\"Gui-Chun Jiang ,&nbsp;Yu-Ying Wang ,&nbsp;Gao-Feng Zheng\",\"doi\":\"10.1016/j.jmaa.2024.128990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we are concerned with the following initial-boundary value problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>Q</mi><mo>(</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mo>∂</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>p</mi><mo>≥</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>:</mo><mo>=</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span>, <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>)</mo></math></span>, and <span><math><mi>Q</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>R</mi><mo>]</mo><mo>)</mo></math></span>, <span><math><mn>0</mn><mo>&lt;</mo><munder><mrow><mi>C</mi></mrow><mo>_</mo></munder><mo>≤</mo><mi>Q</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>≤</mo><mover><mrow><mi>C</mi></mrow><mo>‾</mo></mover><mo>&lt;</mo><mo>∞</mo><mo>,</mo><mspace></mspace><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>r</mi><mo>)</mo><mo>≤</mo><mn>0</mn></math></span>. We extend the asymptotic behavior results, which is well-known when <em>Q</em> is constant according to Matano-Merle (cf. <span><span>[25]</span></span>), for the blow-up solutions. More precisely, we show that when <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>≤</mo><mi>p</mi><mo>&lt;</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, the blowup of radial solution to this problem is always of Type I. This result partially generalizes the conclusions in <span><span>[25]</span></span> for <span><math><mi>Q</mi><mo>≡</mo><mn>1</mn></math></span>. This extension is nontrivial due to the appearance of <em>Q</em>. The quasi-monotonicity formula established by the third author and Cheng in <span><span>[8]</span></span> allows us to use an energy method to get a priori estimates on the rescaled solutions. The contraction mapping principle shows the existence of singular stationary solutions to an associated elliptic equation with a potential. In the end, the properties of zero number for solutions lead to the nonexistence of type II singularity for the problem.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 128990\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009120\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009120","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文关注以下初始边界值问题{ut=Δu+Q(|x|)|u|p-1u,x∈BR,t>0u(x,t)=0,x∈BR,t>0u(x,0)=u0(x),x∈BR,其中 p≥ps:=N+2N-2,u0∈L∞(BR),Q(r)∈C1([0,R]),0<C_≤Q(r)≤C‾<∞,Q′(r)≤0。我们将马塔诺-梅尔(Matano-Merle)提出的 Q 为常数时的渐近行为结果(参见 [25])扩展到炸毁解。更确切地说,我们证明了当 ps≤p<p⁎ 时,该问题的径向解的炸毁总是属于第一类。由于 Q 的出现,这一扩展并不复杂。第三作者和程晓明在 [8] 中建立的准单调性公式允许我们使用能量法来获得重标度解的先验估计。收缩映射原理显示了带势能的相关椭圆方程奇异静止解的存在。最后,解的零数特性导致问题不存在第二类奇点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On type I blowup of some nonlinear heat equations with a potential
In this paper, we are concerned with the following initial-boundary value problem{ut=Δu+Q(|x|)|u|p1u,xBR,t>0u(x,t)=0,xBR,t>0u(x,0)=u0(x),xBR, where pps:=N+2N2, u0L(BR), and Q(r)C1([0,R]), 0<C_Q(r)C<,Q(r)0. We extend the asymptotic behavior results, which is well-known when Q is constant according to Matano-Merle (cf. [25]), for the blow-up solutions. More precisely, we show that when psp<p, the blowup of radial solution to this problem is always of Type I. This result partially generalizes the conclusions in [25] for Q1. This extension is nontrivial due to the appearance of Q. The quasi-monotonicity formula established by the third author and Cheng in [8] allows us to use an energy method to get a priori estimates on the rescaled solutions. The contraction mapping principle shows the existence of singular stationary solutions to an associated elliptic equation with a potential. In the end, the properties of zero number for solutions lead to the nonexistence of type II singularity for the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信