{"title":"与从属布朗运动相关的薛定谔算子热含量的估计值","authors":"Luis Acuña Valverde","doi":"10.1016/j.jmaa.2024.128992","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the heat content for the Schrödinger operator related to a subordinate Brownian motion and we also establish its small time asymptotic behavior for suitable potentials <em>V</em>. The case <span><math><mi>V</mi><mo>=</mo><mi>c</mi><msub><mrow><mn>1</mn></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> for <span><math><mi>c</mi><mo>></mo><mn>0</mn></math></span> and Ω a Borel set of finite measure is investigated in detail.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 128992"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimates concerning the heat content for the Schrödinger operator related to a subordinate Brownian motion\",\"authors\":\"Luis Acuña Valverde\",\"doi\":\"10.1016/j.jmaa.2024.128992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the heat content for the Schrödinger operator related to a subordinate Brownian motion and we also establish its small time asymptotic behavior for suitable potentials <em>V</em>. The case <span><math><mi>V</mi><mo>=</mo><mi>c</mi><msub><mrow><mn>1</mn></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> for <span><math><mi>c</mi><mo>></mo><mn>0</mn></math></span> and Ω a Borel set of finite measure is investigated in detail.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 128992\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009144\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009144","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Estimates concerning the heat content for the Schrödinger operator related to a subordinate Brownian motion
In this paper, we study the heat content for the Schrödinger operator related to a subordinate Brownian motion and we also establish its small time asymptotic behavior for suitable potentials V. The case for and Ω a Borel set of finite measure is investigated in detail.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.