关于具有非全局 Lipschitz 连续和超线性增长漂移与扩散系数的 Lévy 驱动型 McKean-Vlasov SDEs 的无限时间跨度近似问题

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ngoc Khue Tran , Trung-Thuy Kieu , Duc-Trong Luong , Hoang-Long Ngo
{"title":"关于具有非全局 Lipschitz 连续和超线性增长漂移与扩散系数的 Lévy 驱动型 McKean-Vlasov SDEs 的无限时间跨度近似问题","authors":"Ngoc Khue Tran ,&nbsp;Trung-Thuy Kieu ,&nbsp;Duc-Trong Luong ,&nbsp;Hoang-Long Ngo","doi":"10.1016/j.jmaa.2024.128982","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the numerical approximation for McKean-Vlasov stochastic differential equations driven by Lévy processes. We propose a tamed-adaptive Euler-Maruyama scheme and consider its strong convergence in both finite and infinite time horizons when applying for some classes of Lévy-driven McKean-Vlasov stochastic differential equations with non-globally Lipschitz continuous and super-linearly growth drift and diffusion coefficients.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the infinite time horizon approximation for Lévy-driven McKean-Vlasov SDEs with non-globally Lipschitz continuous and super-linearly growth drift and diffusion coefficients\",\"authors\":\"Ngoc Khue Tran ,&nbsp;Trung-Thuy Kieu ,&nbsp;Duc-Trong Luong ,&nbsp;Hoang-Long Ngo\",\"doi\":\"10.1016/j.jmaa.2024.128982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the numerical approximation for McKean-Vlasov stochastic differential equations driven by Lévy processes. We propose a tamed-adaptive Euler-Maruyama scheme and consider its strong convergence in both finite and infinite time horizons when applying for some classes of Lévy-driven McKean-Vlasov stochastic differential equations with non-globally Lipschitz continuous and super-linearly growth drift and diffusion coefficients.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009041\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009041","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了由勒维过程驱动的麦金-弗拉索夫随机微分方程的数值近似。我们提出了一种驯服自适应的 Euler-Maruyama 方案,并考虑了它在有限和无限时间范围内的强收敛性,该方案适用于一些具有非全局 Lipschitz 连续和超线性增长漂移和扩散系数的 Lévy 驱动的 McKean-Vlasov 随机微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the infinite time horizon approximation for Lévy-driven McKean-Vlasov SDEs with non-globally Lipschitz continuous and super-linearly growth drift and diffusion coefficients
This paper studies the numerical approximation for McKean-Vlasov stochastic differential equations driven by Lévy processes. We propose a tamed-adaptive Euler-Maruyama scheme and consider its strong convergence in both finite and infinite time horizons when applying for some classes of Lévy-driven McKean-Vlasov stochastic differential equations with non-globally Lipschitz continuous and super-linearly growth drift and diffusion coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信