用于求解广义绝对值方程的高效牛顿型矩阵分割算法及其在脊回归问题中的应用

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xuehua Li, Cairong Chen
{"title":"用于求解广义绝对值方程的高效牛顿型矩阵分割算法及其在脊回归问题中的应用","authors":"Xuehua Li,&nbsp;Cairong Chen","doi":"10.1016/j.cam.2024.116329","DOIUrl":null,"url":null,"abstract":"<div><div>A generalized Newton-based matrix splitting (GNMS) method is proposed for solving the generalized absolute value equations (GAVEs). Under mild conditions, the GNMS method converges to the unique solution of GAVEs. Moreover, we can obtain a few weaker convergence conditions for some existing methods. Numerical results verify the effectiveness of the proposed method.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient Newton-type matrix splitting algorithm for solving generalized absolute value equations with application to ridge regression problems\",\"authors\":\"Xuehua Li,&nbsp;Cairong Chen\",\"doi\":\"10.1016/j.cam.2024.116329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A generalized Newton-based matrix splitting (GNMS) method is proposed for solving the generalized absolute value equations (GAVEs). Under mild conditions, the GNMS method converges to the unique solution of GAVEs. Moreover, we can obtain a few weaker convergence conditions for some existing methods. Numerical results verify the effectiveness of the proposed method.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种求解广义绝对值方程(GAVE)的基于牛顿的广义矩阵分割(GNMS)方法。在温和条件下,GNMS 方法能收敛到广义绝对值方程的唯一解。此外,我们还可以得到一些现有方法的较弱收敛条件。数值结果验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient Newton-type matrix splitting algorithm for solving generalized absolute value equations with application to ridge regression problems
A generalized Newton-based matrix splitting (GNMS) method is proposed for solving the generalized absolute value equations (GAVEs). Under mild conditions, the GNMS method converges to the unique solution of GAVEs. Moreover, we can obtain a few weaker convergence conditions for some existing methods. Numerical results verify the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信