{"title":"基于双线性系统的限时交叉格拉米安法降维","authors":"Zhi-Hua Xiao , Yao-Lin Jiang , Zhen-Zhong Qi","doi":"10.1016/j.cam.2024.116302","DOIUrl":null,"url":null,"abstract":"<div><div>The cross Gramian is a useful tool in model order reduction but only applicable to square dynamical systems. Throughout this paper, time-limited cross Gramians is firstly extended to square bilinear systems that satisfies a generalized Sylvester equation, and then concepts from decentralized control are used to approximate a cross Gramian for non-square bilinear systems. In order to illustrate these cross Gramians, they are calculated efficiently based on shifted Legendre polynomials and applied to dimension reduction, which leads to a lower dimensional model by truncating the states that are associated with smaller approximate generalized Hankel singular values. In combination of the dominant subspace projection method, our reduction procedure is modified to produce a bounded-input bounded-output stable-preserved reduced model under some certain conditions. At last, the performance of numerical experiments indicates the validity of our reduction methods.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"457 ","pages":"Article 116302"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimension reduction based on time-limited cross Gramians for bilinear systems\",\"authors\":\"Zhi-Hua Xiao , Yao-Lin Jiang , Zhen-Zhong Qi\",\"doi\":\"10.1016/j.cam.2024.116302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The cross Gramian is a useful tool in model order reduction but only applicable to square dynamical systems. Throughout this paper, time-limited cross Gramians is firstly extended to square bilinear systems that satisfies a generalized Sylvester equation, and then concepts from decentralized control are used to approximate a cross Gramian for non-square bilinear systems. In order to illustrate these cross Gramians, they are calculated efficiently based on shifted Legendre polynomials and applied to dimension reduction, which leads to a lower dimensional model by truncating the states that are associated with smaller approximate generalized Hankel singular values. In combination of the dominant subspace projection method, our reduction procedure is modified to produce a bounded-input bounded-output stable-preserved reduced model under some certain conditions. At last, the performance of numerical experiments indicates the validity of our reduction methods.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"457 \",\"pages\":\"Article 116302\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005508\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005508","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Dimension reduction based on time-limited cross Gramians for bilinear systems
The cross Gramian is a useful tool in model order reduction but only applicable to square dynamical systems. Throughout this paper, time-limited cross Gramians is firstly extended to square bilinear systems that satisfies a generalized Sylvester equation, and then concepts from decentralized control are used to approximate a cross Gramian for non-square bilinear systems. In order to illustrate these cross Gramians, they are calculated efficiently based on shifted Legendre polynomials and applied to dimension reduction, which leads to a lower dimensional model by truncating the states that are associated with smaller approximate generalized Hankel singular values. In combination of the dominant subspace projection method, our reduction procedure is modified to produce a bounded-input bounded-output stable-preserved reduced model under some certain conditions. At last, the performance of numerical experiments indicates the validity of our reduction methods.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.