采用差分索引调制的光正交频分复用技术

IF 2.2 3区 物理与天体物理 Q2 OPTICS
Huiqin Wang , Zhen Wang , Qihan Tang , Qingbin Peng , Dan Chen , Yue Zhang , Minghua Cao
{"title":"采用差分索引调制的光正交频分复用技术","authors":"Huiqin Wang ,&nbsp;Zhen Wang ,&nbsp;Qihan Tang ,&nbsp;Qingbin Peng ,&nbsp;Dan Chen ,&nbsp;Yue Zhang ,&nbsp;Minghua Cao","doi":"10.1016/j.optcom.2024.131226","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a differential index modulation (DIM) scheme to address the complex channel estimation challenges in optical orthogonal frequency division multiplexing with index modulation (OOFDM-IM). The main idea of the DIM scheme is to design a time-frequency dispersive matrix with unitary characteristics and perform index mapping based on the Lemer code principles. By applying differential operations, the DIM scheme enables decoding at the receiver without requiring channel estimation. The paper provides a detailed explanation of the design principles and theoretical bit error rate (BER) of the proposed scheme. Simulations based on the exponential Weibull atmospheric turbulence channel model are conducted to compare the DIM scheme with the existing OOFDM-IM scheme. Additionally, a carefully designed proof-of-concept experiment is performed to further validate the scheme’s effectiveness and feasibility. Both simulation and experimental results demonstrate that, compared to OOFDM-IM, the proposed scheme can entirely avoid complex channel estimation with a maximum signal-to-noise ratio (SNR) loss of no more than 4 dB, even under various turbulence intensities and higher-order modulation scenarios. This provides a valuable reference for OOFDM-IM in complex environments or where channel estimation is challenging.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical orthogonal frequency division multiplexing with differential index modulation\",\"authors\":\"Huiqin Wang ,&nbsp;Zhen Wang ,&nbsp;Qihan Tang ,&nbsp;Qingbin Peng ,&nbsp;Dan Chen ,&nbsp;Yue Zhang ,&nbsp;Minghua Cao\",\"doi\":\"10.1016/j.optcom.2024.131226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes a differential index modulation (DIM) scheme to address the complex channel estimation challenges in optical orthogonal frequency division multiplexing with index modulation (OOFDM-IM). The main idea of the DIM scheme is to design a time-frequency dispersive matrix with unitary characteristics and perform index mapping based on the Lemer code principles. By applying differential operations, the DIM scheme enables decoding at the receiver without requiring channel estimation. The paper provides a detailed explanation of the design principles and theoretical bit error rate (BER) of the proposed scheme. Simulations based on the exponential Weibull atmospheric turbulence channel model are conducted to compare the DIM scheme with the existing OOFDM-IM scheme. Additionally, a carefully designed proof-of-concept experiment is performed to further validate the scheme’s effectiveness and feasibility. Both simulation and experimental results demonstrate that, compared to OOFDM-IM, the proposed scheme can entirely avoid complex channel estimation with a maximum signal-to-noise ratio (SNR) loss of no more than 4 dB, even under various turbulence intensities and higher-order modulation scenarios. This provides a valuable reference for OOFDM-IM in complex environments or where channel estimation is challenging.</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401824009635\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401824009635","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种差分索引调制(DIM)方案,以解决光学正交频分复用索引调制(OOFDM-IM)中复杂的信道估计难题。DIM 方案的主要思想是设计一个具有单元特性的时频色散矩阵,并根据 Lemer 码原理进行索引映射。通过应用差分运算,DIM 方案可在接收器上进行解码,而无需进行信道估计。本文详细解释了所提方案的设计原理和理论误码率(BER)。本文基于指数 Weibull 大气湍流信道模型进行了仿真,将 DIM 方案与现有的 OOFDM-IM 方案进行了比较。此外,还进行了精心设计的概念验证实验,以进一步验证该方案的有效性和可行性。仿真和实验结果表明,与 OOFDM-IM 相比,即使在各种湍流强度和高阶调制情况下,所提出的方案也能完全避免复杂的信道估计,最大信噪比(SNR)损失不超过 4 dB。这为复杂环境或信道估计具有挑战性的 OOFDM-IM 提供了宝贵的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical orthogonal frequency division multiplexing with differential index modulation
This paper proposes a differential index modulation (DIM) scheme to address the complex channel estimation challenges in optical orthogonal frequency division multiplexing with index modulation (OOFDM-IM). The main idea of the DIM scheme is to design a time-frequency dispersive matrix with unitary characteristics and perform index mapping based on the Lemer code principles. By applying differential operations, the DIM scheme enables decoding at the receiver without requiring channel estimation. The paper provides a detailed explanation of the design principles and theoretical bit error rate (BER) of the proposed scheme. Simulations based on the exponential Weibull atmospheric turbulence channel model are conducted to compare the DIM scheme with the existing OOFDM-IM scheme. Additionally, a carefully designed proof-of-concept experiment is performed to further validate the scheme’s effectiveness and feasibility. Both simulation and experimental results demonstrate that, compared to OOFDM-IM, the proposed scheme can entirely avoid complex channel estimation with a maximum signal-to-noise ratio (SNR) loss of no more than 4 dB, even under various turbulence intensities and higher-order modulation scenarios. This provides a valuable reference for OOFDM-IM in complex environments or where channel estimation is challenging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信