螺旋卷管内上升环流液膜厚度的实验和理论研究

IF 3.6 2区 工程技术 Q1 MECHANICS
Shuai Liu , Li Liu , Hanyang Gu , Ke Wang
{"title":"螺旋卷管内上升环流液膜厚度的实验和理论研究","authors":"Shuai Liu ,&nbsp;Li Liu ,&nbsp;Hanyang Gu ,&nbsp;Ke Wang","doi":"10.1016/j.ijmultiphaseflow.2024.105041","DOIUrl":null,"url":null,"abstract":"<div><div>The liquid film thickness is crucial for studying the thermal hydraulic mechanism of the annular flow region in helically coiled tubes (HCTs). This paper introduces a refined experimental study on the liquid film thickness of annular flow in HCTs, utilizing a newly developed liquid film sensor. The experimental results indicate that the smaller coil diameters and pitches result in thinner average liquid film thicknesses. The average liquid film thickness decreases with increasing superficial gas velocity and decreasing superficial liquid velocity. However, the liquid film thickness at different circumferential positions on the cross-section of the tube exhibits varying sensitivities to superficial gas and liquid velocities. The experimental data reveal that the existing typical correlation formula for the average liquid film thickness of annular flow in straight tubes does not apply to HCTs. Consequently, a new prediction model is proposed for the average liquid film thickness of the annular flow region in HCTs, based on the modified Froude number, modified Dean number, Ekman number, and Reynolds number. This model comprehensively incorporates the structural characteristics of HCTs and fluid properties, and its validity is verified through the utilization of available and current data in the literature.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"182 ","pages":"Article 105041"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and theoretical study on liquid film thickness of upward annular flow in helically coiled tubes\",\"authors\":\"Shuai Liu ,&nbsp;Li Liu ,&nbsp;Hanyang Gu ,&nbsp;Ke Wang\",\"doi\":\"10.1016/j.ijmultiphaseflow.2024.105041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The liquid film thickness is crucial for studying the thermal hydraulic mechanism of the annular flow region in helically coiled tubes (HCTs). This paper introduces a refined experimental study on the liquid film thickness of annular flow in HCTs, utilizing a newly developed liquid film sensor. The experimental results indicate that the smaller coil diameters and pitches result in thinner average liquid film thicknesses. The average liquid film thickness decreases with increasing superficial gas velocity and decreasing superficial liquid velocity. However, the liquid film thickness at different circumferential positions on the cross-section of the tube exhibits varying sensitivities to superficial gas and liquid velocities. The experimental data reveal that the existing typical correlation formula for the average liquid film thickness of annular flow in straight tubes does not apply to HCTs. Consequently, a new prediction model is proposed for the average liquid film thickness of the annular flow region in HCTs, based on the modified Froude number, modified Dean number, Ekman number, and Reynolds number. This model comprehensively incorporates the structural characteristics of HCTs and fluid properties, and its validity is verified through the utilization of available and current data in the literature.</div></div>\",\"PeriodicalId\":339,\"journal\":{\"name\":\"International Journal of Multiphase Flow\",\"volume\":\"182 \",\"pages\":\"Article 105041\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multiphase Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301932224003185\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932224003185","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

液膜厚度对于研究螺旋卷管(HCT)环流区的热液压机制至关重要。本文介绍了利用新开发的液膜传感器对 HCT 环流液膜厚度进行的精细实验研究。实验结果表明,线圈直径和间距越小,平均液膜厚度越薄。平均液膜厚度随着表层气体速度的增加和表层液体速度的减小而减小。然而,管横截面上不同圆周位置的液膜厚度对表层气体和液体速度的敏感性各不相同。实验数据表明,现有的直管环流平均液膜厚度典型相关公式不适用于 HCT。因此,基于修正的弗劳德数、修正的迪恩数、埃克曼数和雷诺数,提出了一种新的 HCT 环流区平均液膜厚度预测模型。该模型综合考虑了 HCT 的结构特征和流体特性,并通过利用现有文献数据验证了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Experimental and theoretical study on liquid film thickness of upward annular flow in helically coiled tubes

Experimental and theoretical study on liquid film thickness of upward annular flow in helically coiled tubes
The liquid film thickness is crucial for studying the thermal hydraulic mechanism of the annular flow region in helically coiled tubes (HCTs). This paper introduces a refined experimental study on the liquid film thickness of annular flow in HCTs, utilizing a newly developed liquid film sensor. The experimental results indicate that the smaller coil diameters and pitches result in thinner average liquid film thicknesses. The average liquid film thickness decreases with increasing superficial gas velocity and decreasing superficial liquid velocity. However, the liquid film thickness at different circumferential positions on the cross-section of the tube exhibits varying sensitivities to superficial gas and liquid velocities. The experimental data reveal that the existing typical correlation formula for the average liquid film thickness of annular flow in straight tubes does not apply to HCTs. Consequently, a new prediction model is proposed for the average liquid film thickness of the annular flow region in HCTs, based on the modified Froude number, modified Dean number, Ekman number, and Reynolds number. This model comprehensively incorporates the structural characteristics of HCTs and fluid properties, and its validity is verified through the utilization of available and current data in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信