Bin Tong , Yuee Xie , Yuanping Chen , Zhongxuan Wang
{"title":"铁磁性有机光伏电池中的自旋效应","authors":"Bin Tong , Yuee Xie , Yuanping Chen , Zhongxuan Wang","doi":"10.1016/j.orgel.2024.107151","DOIUrl":null,"url":null,"abstract":"<div><div>In organic photovoltaic devices, the separation and transport of photogenerated charges play crucial roles for power conversion efficiency. Magnetic doping in organic solar cells can effectively enhance the power conversion efficiency by introducing a static magnetic field. In this study, we observed that in pure organic magnetic solar cells, the spin-polarization-induced spin scattering effect can also efficiently modulate the photocurrent in solar cells. Compared to the demagnetized state, the short-circuit current of PTB7:nw-P3HT:PCBM solar cells increased by approximately 0.3 % after magnetization. The dielectric constant only increased by about 0.05 %. However, above the Curie temperature 310 K, the long-range spin order in PTB7:nw-P3HT:PCBM solar cells disappears, resulting in consistent circuit currents before and after magnetization. Therefore, magnetic doping can enhance the short-circuit current in organic solar cells by weakening the spin scattering effect and enhancing the charge carrier mobility.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"136 ","pages":"Article 107151"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin effect in the ferromagnetic organic photovoltaics cells\",\"authors\":\"Bin Tong , Yuee Xie , Yuanping Chen , Zhongxuan Wang\",\"doi\":\"10.1016/j.orgel.2024.107151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In organic photovoltaic devices, the separation and transport of photogenerated charges play crucial roles for power conversion efficiency. Magnetic doping in organic solar cells can effectively enhance the power conversion efficiency by introducing a static magnetic field. In this study, we observed that in pure organic magnetic solar cells, the spin-polarization-induced spin scattering effect can also efficiently modulate the photocurrent in solar cells. Compared to the demagnetized state, the short-circuit current of PTB7:nw-P3HT:PCBM solar cells increased by approximately 0.3 % after magnetization. The dielectric constant only increased by about 0.05 %. However, above the Curie temperature 310 K, the long-range spin order in PTB7:nw-P3HT:PCBM solar cells disappears, resulting in consistent circuit currents before and after magnetization. Therefore, magnetic doping can enhance the short-circuit current in organic solar cells by weakening the spin scattering effect and enhancing the charge carrier mobility.</div></div>\",\"PeriodicalId\":399,\"journal\":{\"name\":\"Organic Electronics\",\"volume\":\"136 \",\"pages\":\"Article 107151\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566119924001629\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001629","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在有机光伏设备中,光生电荷的分离和传输对功率转换效率起着至关重要的作用。在有机太阳能电池中掺入磁性物质可通过引入静态磁场有效提高功率转换效率。在这项研究中,我们观察到在纯有机磁性太阳能电池中,自旋极化诱导的自旋散射效应也能有效调节太阳能电池中的光电流。与去磁状态相比,PTB7:nw-P3HT:PCBM 太阳能电池的短路电流在磁化后增加了约 0.3%。介电常数仅增加了约 0.05%。然而,在居里温度 310 K 以上,PTB7:nw-P3HT:PCBM 太阳能电池中的长程自旋阶消失,导致磁化前后的电路电流一致。因此,磁掺杂可以通过削弱自旋散射效应和提高电荷载流子迁移率来增强有机太阳能电池的短路电流。
Spin effect in the ferromagnetic organic photovoltaics cells
In organic photovoltaic devices, the separation and transport of photogenerated charges play crucial roles for power conversion efficiency. Magnetic doping in organic solar cells can effectively enhance the power conversion efficiency by introducing a static magnetic field. In this study, we observed that in pure organic magnetic solar cells, the spin-polarization-induced spin scattering effect can also efficiently modulate the photocurrent in solar cells. Compared to the demagnetized state, the short-circuit current of PTB7:nw-P3HT:PCBM solar cells increased by approximately 0.3 % after magnetization. The dielectric constant only increased by about 0.05 %. However, above the Curie temperature 310 K, the long-range spin order in PTB7:nw-P3HT:PCBM solar cells disappears, resulting in consistent circuit currents before and after magnetization. Therefore, magnetic doping can enhance the short-circuit current in organic solar cells by weakening the spin scattering effect and enhancing the charge carrier mobility.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.