高阶 Lp 等operimetric 和 Sobolev 不等式

IF 1.7 2区 数学 Q1 MATHEMATICS
Julián Haddad , Dylan Langharst , Eli Putterman , Michael Roysdon , Deping Ye
{"title":"高阶 Lp 等operimetric 和 Sobolev 不等式","authors":"Julián Haddad ,&nbsp;Dylan Langharst ,&nbsp;Eli Putterman ,&nbsp;Michael Roysdon ,&nbsp;Deping Ye","doi":"10.1016/j.jfa.2024.110722","DOIUrl":null,"url":null,"abstract":"<div><div>Schneider introduced an inter-dimensional difference body operator on convex bodies, and proved an associated inequality. In the prequel to this work, we showed that this concept can be extended to a rich class of operators from convex geometry and proved the associated isoperimetric inequalities. The role of cosine-like operators, which generate convex bodies in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> from those in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, were replaced by inter-dimensional simplicial operators, which generate convex bodies in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mi>m</mi></mrow></msup></math></span> from those in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> (or vice versa). In this work, we treat the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> extensions of these operators, and, furthermore, extend the role of the simplex to arbitrary <em>m</em>-dimensional convex bodies containing the origin. We establish <em>m</em>th-order <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> isoperimetric inequalities, including the <em>m</em>th-order versions of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> Petty projection inequality, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> Busemann-Petty centroid inequality, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> Santaló inequalities, and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> affine Sobolev inequalities. As an application, we obtain isoperimetric inequalities for the volume of the operator norm of linear functionals <span><math><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msub><mrow><mo>‖</mo><mo>⋅</mo><mo>‖</mo></mrow><mrow><mi>E</mi></mrow></msub><mo>)</mo><mo>→</mo><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><msub><mrow><mo>‖</mo><mo>⋅</mo><mo>‖</mo></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 2","pages":"Article 110722"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher-order Lp isoperimetric and Sobolev inequalities\",\"authors\":\"Julián Haddad ,&nbsp;Dylan Langharst ,&nbsp;Eli Putterman ,&nbsp;Michael Roysdon ,&nbsp;Deping Ye\",\"doi\":\"10.1016/j.jfa.2024.110722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Schneider introduced an inter-dimensional difference body operator on convex bodies, and proved an associated inequality. In the prequel to this work, we showed that this concept can be extended to a rich class of operators from convex geometry and proved the associated isoperimetric inequalities. The role of cosine-like operators, which generate convex bodies in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> from those in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, were replaced by inter-dimensional simplicial operators, which generate convex bodies in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mi>m</mi></mrow></msup></math></span> from those in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> (or vice versa). In this work, we treat the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> extensions of these operators, and, furthermore, extend the role of the simplex to arbitrary <em>m</em>-dimensional convex bodies containing the origin. We establish <em>m</em>th-order <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> isoperimetric inequalities, including the <em>m</em>th-order versions of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> Petty projection inequality, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> Busemann-Petty centroid inequality, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> Santaló inequalities, and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> affine Sobolev inequalities. As an application, we obtain isoperimetric inequalities for the volume of the operator norm of linear functionals <span><math><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msub><mrow><mo>‖</mo><mo>⋅</mo><mo>‖</mo></mrow><mrow><mi>E</mi></mrow></msub><mo>)</mo><mo>→</mo><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><msub><mrow><mo>‖</mo><mo>⋅</mo><mo>‖</mo></mrow><mrow><mi>F</mi></mrow></msub><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 2\",\"pages\":\"Article 110722\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624004105\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004105","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

施耐德引入了凸体上的维间差体算子,并证明了相关的不等式。在这项工作的前传中,我们证明了这一概念可以扩展到凸几何中丰富的一类算子,并证明了相关的等周不等式。从 Rn 中生成 Rn 中凸体的余弦类算子的作用被维间简算子所取代,后者从 Rn 中生成 Rnm 中的凸体(反之亦然)。在这项工作中,我们处理了这些算子的 Lp 扩展,并进一步将单纯形的作用扩展到包含原点的任意 m 维凸体。我们建立了 mth 阶 Lp 等周不等式,包括 mth 阶版本的 Lp Petty 投影不等式、Lp Busemann-Petty 重心不等式、Lp Santaló 不等式和 Lp 仿射 Sobolev 不等式。作为应用,我们得到了线性函数(Rn,‖⋅‖E)→(Rm,‖⋅‖F)的算子规范体的等距不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher-order Lp isoperimetric and Sobolev inequalities
Schneider introduced an inter-dimensional difference body operator on convex bodies, and proved an associated inequality. In the prequel to this work, we showed that this concept can be extended to a rich class of operators from convex geometry and proved the associated isoperimetric inequalities. The role of cosine-like operators, which generate convex bodies in Rn from those in Rn, were replaced by inter-dimensional simplicial operators, which generate convex bodies in Rnm from those in Rn (or vice versa). In this work, we treat the Lp extensions of these operators, and, furthermore, extend the role of the simplex to arbitrary m-dimensional convex bodies containing the origin. We establish mth-order Lp isoperimetric inequalities, including the mth-order versions of the Lp Petty projection inequality, Lp Busemann-Petty centroid inequality, Lp Santaló inequalities, and Lp affine Sobolev inequalities. As an application, we obtain isoperimetric inequalities for the volume of the operator norm of linear functionals (Rn,E)(Rm,F).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信