{"title":"伯恩斯坦空间上的对偶性、BMO 和汉克尔算子","authors":"Carlo Bellavita , Marco M. Peloso","doi":"10.1016/j.jfa.2024.110708","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we deal with the problem of describing the dual space <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> of the Bernstein space <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>, that is the space of entire functions of exponential type (at most) <span><math><mi>κ</mi><mo>></mo><mn>0</mn></math></span> whose restriction to the real line is Lebesgue integrable. We provide several characterizations, showing that such dual space can be described as a quotient of the space of entire functions of exponential type <em>κ</em> whose restriction to the real line are in a suitable BMO-type space, or as the space of symbols <em>b</em> for which the Hankel operator <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> is bounded on the Paley–Wiener space <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi><mo>/</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>. We also provide a characterization of <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> as the BMO space w.r.t. the Clark measures of the inner function <span><math><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mn>2</mn><mi>κ</mi><mi>z</mi></mrow></msup></math></span> on the upper half-plane, in analogy with the known description of the dual of backward-shift invariant 1-spaces on the torus. Furthermore, we show that the orthogonal projection <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>κ</mi></mrow></msub><mo>:</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>→</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> induces a bounded operator from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> onto <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>.</div><div>Finally, we show that <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msubsup></math></span> is the dual space of a suitable VMO-type space or as the space of symbols <em>b</em> for which the Hankel operator <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> on the Paley–Wiener space <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi><mo>/</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> is compact.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Duality, BMO and Hankel operators on Bernstein spaces\",\"authors\":\"Carlo Bellavita , Marco M. Peloso\",\"doi\":\"10.1016/j.jfa.2024.110708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we deal with the problem of describing the dual space <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> of the Bernstein space <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>, that is the space of entire functions of exponential type (at most) <span><math><mi>κ</mi><mo>></mo><mn>0</mn></math></span> whose restriction to the real line is Lebesgue integrable. We provide several characterizations, showing that such dual space can be described as a quotient of the space of entire functions of exponential type <em>κ</em> whose restriction to the real line are in a suitable BMO-type space, or as the space of symbols <em>b</em> for which the Hankel operator <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> is bounded on the Paley–Wiener space <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi><mo>/</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>. We also provide a characterization of <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> as the BMO space w.r.t. the Clark measures of the inner function <span><math><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mn>2</mn><mi>κ</mi><mi>z</mi></mrow></msup></math></span> on the upper half-plane, in analogy with the known description of the dual of backward-shift invariant 1-spaces on the torus. Furthermore, we show that the orthogonal projection <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>κ</mi></mrow></msub><mo>:</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo><mo>→</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> induces a bounded operator from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> onto <span><math><msup><mrow><mo>(</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>.</div><div>Finally, we show that <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msubsup></math></span> is the dual space of a suitable VMO-type space or as the space of symbols <em>b</em> for which the Hankel operator <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> on the Paley–Wiener space <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>κ</mi><mo>/</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> is compact.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003963\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003963","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Duality, BMO and Hankel operators on Bernstein spaces
In this paper we deal with the problem of describing the dual space of the Bernstein space , that is the space of entire functions of exponential type (at most) whose restriction to the real line is Lebesgue integrable. We provide several characterizations, showing that such dual space can be described as a quotient of the space of entire functions of exponential type κ whose restriction to the real line are in a suitable BMO-type space, or as the space of symbols b for which the Hankel operator is bounded on the Paley–Wiener space . We also provide a characterization of as the BMO space w.r.t. the Clark measures of the inner function on the upper half-plane, in analogy with the known description of the dual of backward-shift invariant 1-spaces on the torus. Furthermore, we show that the orthogonal projection induces a bounded operator from onto .
Finally, we show that is the dual space of a suitable VMO-type space or as the space of symbols b for which the Hankel operator on the Paley–Wiener space is compact.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis