具有分数拉普拉奇的多稳态方程的时周期行波和传播梯田:抽象动力系统方法

IF 1.7 2区 数学 Q1 MATHEMATICS
Weiwei Ding , Xiao Li , Xing Liang
{"title":"具有分数拉普拉奇的多稳态方程的时周期行波和传播梯田:抽象动力系统方法","authors":"Weiwei Ding ,&nbsp;Xiao Li ,&nbsp;Xing Liang","doi":"10.1016/j.jfa.2024.110711","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is devoted to studying the existence of traveling wave solutions for reaction-diffusion equations with fractional Laplacians in time-periodic environments. By developing a dynamical systems approach, we establish the existence of propagating terraces for equations with multistable nonlinearities, which consequently implies the existence of bistable traveling waves. Furthermore, we investigate whether traveling waves exist in the multistable case. We provide an affirmative answer to this question for a special type of nonlinearity in high-frequency oscillating environments, and determine the homogenized limit of the traveling waves as the period approaches 0.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 2","pages":"Article 110711"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-periodic traveling waves and propagating terraces for multistable equations with a fractional Laplacian: An abstract dynamical systems approach\",\"authors\":\"Weiwei Ding ,&nbsp;Xiao Li ,&nbsp;Xing Liang\",\"doi\":\"10.1016/j.jfa.2024.110711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is devoted to studying the existence of traveling wave solutions for reaction-diffusion equations with fractional Laplacians in time-periodic environments. By developing a dynamical systems approach, we establish the existence of propagating terraces for equations with multistable nonlinearities, which consequently implies the existence of bistable traveling waves. Furthermore, we investigate whether traveling waves exist in the multistable case. We provide an affirmative answer to this question for a special type of nonlinearity in high-frequency oscillating environments, and determine the homogenized limit of the traveling waves as the period approaches 0.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 2\",\"pages\":\"Article 110711\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003999\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003999","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于研究具有分数拉普拉斯的反应扩散方程在时间周期环境中行波解的存在性。通过发展动力学系统方法,我们确定了具有多稳非线性的方程的传播梯度的存在性,从而意味着双稳态行波的存在。此外,我们还研究了在多稳态情况下是否存在行波。对于高频振荡环境中的一种特殊非线性,我们给出了肯定的答案,并确定了当周期接近 0 时行波的同质化极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-periodic traveling waves and propagating terraces for multistable equations with a fractional Laplacian: An abstract dynamical systems approach
This paper is devoted to studying the existence of traveling wave solutions for reaction-diffusion equations with fractional Laplacians in time-periodic environments. By developing a dynamical systems approach, we establish the existence of propagating terraces for equations with multistable nonlinearities, which consequently implies the existence of bistable traveling waves. Furthermore, we investigate whether traveling waves exist in the multistable case. We provide an affirmative answer to this question for a special type of nonlinearity in high-frequency oscillating environments, and determine the homogenized limit of the traveling waves as the period approaches 0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信