在索雷特和杜富尔效应作用下,纤毛辅助导电微极性流体在加热弯曲通道中流动

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
M.S. Arslan, Z. Abbas, M.Y. Rafiq
{"title":"在索雷特和杜富尔效应作用下,纤毛辅助导电微极性流体在加热弯曲通道中流动","authors":"M.S. Arslan,&nbsp;Z. Abbas,&nbsp;M.Y. Rafiq","doi":"10.1016/j.cjph.2024.10.018","DOIUrl":null,"url":null,"abstract":"<div><div>Cilia flow plays a crucial role in biological systems such as the movement of mucus in the respiratory tract, circulation of cerebrospinal fluid in the brain, and propulsion of sperm cells. Understanding the cilia flow of viscous fluids is essential for elucidating the biomechanics of these processes and their implications for health and disease. Motivated by such numerous biomedical applications, this article aims to exhibit the influence of heat and mass transfer on the ciliary flow of an electrical conducting micropolar fluid in a curved channel. The energy and concentration equations are modulated with viscous dissipation, Soret, and Dufour effects. The constitutive equations are simplified by the lubrication approximation and then solved numerically using the implicit finite difference method (FDM). Results for velocity, pumping phenomenon, concentration, thermal field, rate of heat transfer, streamlines, skin friction coefficient, Nusselt number, and Sherwood number are analyzed subject to pertinent parameters. The study reveals that velocity is enhanced via both the micropolar parameter and curvature parameter. Temperature enhances for larger values of Dufour and Brickman numbers. Furthermore, the radial magnetic field plays a resistive role in the trapped bolus. The findings presented in this study should prove beneficial for researchers in the domains of medicine, engineering, science, and fluid mechanics. Further, it is found that the micropolar fluid model is more suitable for biofluids like blood.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cilia-assisted flow of electrically conducting micropolar fluid in a heated curved channel under Soret and Dufour effects\",\"authors\":\"M.S. Arslan,&nbsp;Z. Abbas,&nbsp;M.Y. Rafiq\",\"doi\":\"10.1016/j.cjph.2024.10.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cilia flow plays a crucial role in biological systems such as the movement of mucus in the respiratory tract, circulation of cerebrospinal fluid in the brain, and propulsion of sperm cells. Understanding the cilia flow of viscous fluids is essential for elucidating the biomechanics of these processes and their implications for health and disease. Motivated by such numerous biomedical applications, this article aims to exhibit the influence of heat and mass transfer on the ciliary flow of an electrical conducting micropolar fluid in a curved channel. The energy and concentration equations are modulated with viscous dissipation, Soret, and Dufour effects. The constitutive equations are simplified by the lubrication approximation and then solved numerically using the implicit finite difference method (FDM). Results for velocity, pumping phenomenon, concentration, thermal field, rate of heat transfer, streamlines, skin friction coefficient, Nusselt number, and Sherwood number are analyzed subject to pertinent parameters. The study reveals that velocity is enhanced via both the micropolar parameter and curvature parameter. Temperature enhances for larger values of Dufour and Brickman numbers. Furthermore, the radial magnetic field plays a resistive role in the trapped bolus. The findings presented in this study should prove beneficial for researchers in the domains of medicine, engineering, science, and fluid mechanics. Further, it is found that the micropolar fluid model is more suitable for biofluids like blood.</div></div>\",\"PeriodicalId\":10340,\"journal\":{\"name\":\"Chinese Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0577907324004088\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907324004088","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纤毛流动在生物系统中起着至关重要的作用,例如呼吸道中粘液的流动、大脑中脑脊液的循环以及精子细胞的推进。了解粘性流体的纤毛流动对于阐明这些过程的生物力学及其对健康和疾病的影响至关重要。在如此众多的生物医学应用的推动下,本文旨在展示热量和质量传递对导电微极性流体在弯曲通道中的纤毛流动的影响。能量和浓度方程受到粘性耗散、索雷特和杜福尔效应的影响。通过润滑近似简化了构成方程,然后使用隐式有限差分法(FDM)进行数值求解。根据相关参数分析了速度、泵送现象、浓度、热场、传热速率、流线、表皮摩擦系数、努塞尔特数和舍伍德数的结果。研究结果表明,速度通过微波参数和曲率参数得到增强。当杜富尔数和布里克曼数的值越大,温度越高。此外,径向磁场在被困漩涡中起着阻力作用。本研究的发现将对医学、工程学、科学和流体力学领域的研究人员大有裨益。此外,研究还发现微极性流体模型更适用于血液等生物流体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cilia-assisted flow of electrically conducting micropolar fluid in a heated curved channel under Soret and Dufour effects

Cilia-assisted flow of electrically conducting micropolar fluid in a heated curved channel under Soret and Dufour effects
Cilia flow plays a crucial role in biological systems such as the movement of mucus in the respiratory tract, circulation of cerebrospinal fluid in the brain, and propulsion of sperm cells. Understanding the cilia flow of viscous fluids is essential for elucidating the biomechanics of these processes and their implications for health and disease. Motivated by such numerous biomedical applications, this article aims to exhibit the influence of heat and mass transfer on the ciliary flow of an electrical conducting micropolar fluid in a curved channel. The energy and concentration equations are modulated with viscous dissipation, Soret, and Dufour effects. The constitutive equations are simplified by the lubrication approximation and then solved numerically using the implicit finite difference method (FDM). Results for velocity, pumping phenomenon, concentration, thermal field, rate of heat transfer, streamlines, skin friction coefficient, Nusselt number, and Sherwood number are analyzed subject to pertinent parameters. The study reveals that velocity is enhanced via both the micropolar parameter and curvature parameter. Temperature enhances for larger values of Dufour and Brickman numbers. Furthermore, the radial magnetic field plays a resistive role in the trapped bolus. The findings presented in this study should prove beneficial for researchers in the domains of medicine, engineering, science, and fluid mechanics. Further, it is found that the micropolar fluid model is more suitable for biofluids like blood.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信