两个图形解决一维有限蜂窝自动机的周期可逆性问题

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Chen Wang, Junchi Ma, Chao Wang, Defu Lin, Weilin Chen
{"title":"两个图形解决一维有限蜂窝自动机的周期可逆性问题","authors":"Chen Wang,&nbsp;Junchi Ma,&nbsp;Chao Wang,&nbsp;Defu Lin,&nbsp;Weilin Chen","doi":"10.1016/j.amc.2024.129151","DOIUrl":null,"url":null,"abstract":"<div><div>Finite cellular automata (FCA), as discrete dynamical systems, are widely used in simulations, coding theory, information theory, and so on. Its reversibility, related to information loss in system evolution, is one of the most important problems. In this paper, we perform calculations on two elaborate graphs — the reversibility graph and the circuit graph and discover that the reversibility of one-dimensional FCA exhibits periodicity as the number of cells increases. We provide a method to compute the reversibility sequence that encompasses the reversibility of one-dimensional FCA with any number of cells in <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>V</mi><mo>+</mo><mi>q</mi><mi>V</mi><mi>k</mi><mo>+</mo><mi>V</mi><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> where <span><math><mi>q</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>k</mi></math></span> are the number of states, neighborhood, vertices, and elementary circuits in the reversibility graph of FCA. The calculations in this paper are applicable to FCA with two mainstream boundaries, null boundary and periodic boundary. This means we have an efficient method to determine the reversibility of almost all one-dimensional FCA, with a complexity independent of cell number.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two graphs: Resolving the periodic reversibility of one-dimensional finite cellular automata\",\"authors\":\"Chen Wang,&nbsp;Junchi Ma,&nbsp;Chao Wang,&nbsp;Defu Lin,&nbsp;Weilin Chen\",\"doi\":\"10.1016/j.amc.2024.129151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Finite cellular automata (FCA), as discrete dynamical systems, are widely used in simulations, coding theory, information theory, and so on. Its reversibility, related to information loss in system evolution, is one of the most important problems. In this paper, we perform calculations on two elaborate graphs — the reversibility graph and the circuit graph and discover that the reversibility of one-dimensional FCA exhibits periodicity as the number of cells increases. We provide a method to compute the reversibility sequence that encompasses the reversibility of one-dimensional FCA with any number of cells in <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mi>V</mi><mo>+</mo><mi>q</mi><mi>V</mi><mi>k</mi><mo>+</mo><mi>V</mi><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> where <span><math><mi>q</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>V</mi><mo>,</mo><mi>k</mi></math></span> are the number of states, neighborhood, vertices, and elementary circuits in the reversibility graph of FCA. The calculations in this paper are applicable to FCA with two mainstream boundaries, null boundary and periodic boundary. This means we have an efficient method to determine the reversibility of almost all one-dimensional FCA, with a complexity independent of cell number.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009630032400612X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009630032400612X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

有限蜂窝自动机(FCA)作为离散动力系统,被广泛应用于模拟、编码理论、信息论等领域。其可逆性与系统演化过程中的信息丢失有关,是最重要的问题之一。在本文中,我们对可逆性图和电路图这两个精心设计的图进行了计算,发现一维 FCA 的可逆性随着单元数的增加而呈现周期性。我们提供了一种方法,可以在 O(qmV+qVk+Vk2) 内计算包含任意单元数的一维 FCA 的可逆性序列,其中 q,m,V,k 是 FCA 可逆性图中的状态数、邻域数、顶点数和元电路数。本文的计算适用于具有两种主流边界(空边界和周期边界)的 FCA。这意味着我们有了一种高效的方法来确定几乎所有一维 FCA 的可逆性,其复杂性与单元数无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two graphs: Resolving the periodic reversibility of one-dimensional finite cellular automata
Finite cellular automata (FCA), as discrete dynamical systems, are widely used in simulations, coding theory, information theory, and so on. Its reversibility, related to information loss in system evolution, is one of the most important problems. In this paper, we perform calculations on two elaborate graphs — the reversibility graph and the circuit graph and discover that the reversibility of one-dimensional FCA exhibits periodicity as the number of cells increases. We provide a method to compute the reversibility sequence that encompasses the reversibility of one-dimensional FCA with any number of cells in O(qmV+qVk+Vk2) where q,m,V,k are the number of states, neighborhood, vertices, and elementary circuits in the reversibility graph of FCA. The calculations in this paper are applicable to FCA with two mainstream boundaries, null boundary and periodic boundary. This means we have an efficient method to determine the reversibility of almost all one-dimensional FCA, with a complexity independent of cell number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信