{"title":"聚乙二醇 400 对巴氏杆菌控制胭脂虫幼虫的增效潜力","authors":"","doi":"10.1016/j.pestbp.2024.106182","DOIUrl":null,"url":null,"abstract":"<div><div>The efficacy of entomopathogenic fungi as pest control agents is constrained by both their physiological state and external environmental factors. This study identified synergists capable of enhancing the insecticidal activity of <em>Beauveria bassiana</em> (Bb) and investigated the underlying synergistic mechanisms. Our results found that among 6 potential synergists, polyethylene glycol 400 (PEG) and trehalose significantly improved Bb's lethality against <em>Hyphantria cunea</em> larvae, with PEG demonstrating the most pronounced effect. PEG treatment markedly increased Bb spore adhesion and germination rates, while spore hydrophobicity and growth rates remained unaffected. Moreover, PEG-treated spores exhibited higher thermal tolerance compared to untreated ones. In the Bb + PEG treatment group, the hemocyte count, encapsulation and melanization activities, and the expression of related regulatory genes were significantly lower than those in the Bb treatment group. Additionally, pathogen recognition, signal transduction, and humoral immunity effector genes expression were markedly suppressed in the Bb + PEG group. A significant reduction in the content of total amino acids, free fatty acids, glucose, and trehalose, alongside decreased expression of key regulatory genes in the tricarboxylic acid cycle and glycolysis pathways, was observed in the Bb + PEG treatment group. Furthermore, PEG enhanced Bb-induced apoptosis in <em>H. cunea</em> larvae, as evidenced by the upregulation of apoptosis-related genes. Notably, PEG alone did not significantly impact the innate immunity, energy metabolism, or apoptosis in <em>H. cunea</em> larvae. Overall, PEG exhibits considerable potential in amplifying Bb's insecticidal activity by directly optimizing spore performance and indirectly modulating the larvae's innate immunity, energy metabolism, and apoptosis.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The synergistic potential of polyethylene glycol 400 for the control of Hyphantria cunea larvae by Beauveria bassiana\",\"authors\":\"\",\"doi\":\"10.1016/j.pestbp.2024.106182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The efficacy of entomopathogenic fungi as pest control agents is constrained by both their physiological state and external environmental factors. This study identified synergists capable of enhancing the insecticidal activity of <em>Beauveria bassiana</em> (Bb) and investigated the underlying synergistic mechanisms. Our results found that among 6 potential synergists, polyethylene glycol 400 (PEG) and trehalose significantly improved Bb's lethality against <em>Hyphantria cunea</em> larvae, with PEG demonstrating the most pronounced effect. PEG treatment markedly increased Bb spore adhesion and germination rates, while spore hydrophobicity and growth rates remained unaffected. Moreover, PEG-treated spores exhibited higher thermal tolerance compared to untreated ones. In the Bb + PEG treatment group, the hemocyte count, encapsulation and melanization activities, and the expression of related regulatory genes were significantly lower than those in the Bb treatment group. Additionally, pathogen recognition, signal transduction, and humoral immunity effector genes expression were markedly suppressed in the Bb + PEG group. A significant reduction in the content of total amino acids, free fatty acids, glucose, and trehalose, alongside decreased expression of key regulatory genes in the tricarboxylic acid cycle and glycolysis pathways, was observed in the Bb + PEG treatment group. Furthermore, PEG enhanced Bb-induced apoptosis in <em>H. cunea</em> larvae, as evidenced by the upregulation of apoptosis-related genes. Notably, PEG alone did not significantly impact the innate immunity, energy metabolism, or apoptosis in <em>H. cunea</em> larvae. Overall, PEG exhibits considerable potential in amplifying Bb's insecticidal activity by directly optimizing spore performance and indirectly modulating the larvae's innate immunity, energy metabolism, and apoptosis.</div></div>\",\"PeriodicalId\":19828,\"journal\":{\"name\":\"Pesticide Biochemistry and Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pesticide Biochemistry and Physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048357524004152\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357524004152","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The synergistic potential of polyethylene glycol 400 for the control of Hyphantria cunea larvae by Beauveria bassiana
The efficacy of entomopathogenic fungi as pest control agents is constrained by both their physiological state and external environmental factors. This study identified synergists capable of enhancing the insecticidal activity of Beauveria bassiana (Bb) and investigated the underlying synergistic mechanisms. Our results found that among 6 potential synergists, polyethylene glycol 400 (PEG) and trehalose significantly improved Bb's lethality against Hyphantria cunea larvae, with PEG demonstrating the most pronounced effect. PEG treatment markedly increased Bb spore adhesion and germination rates, while spore hydrophobicity and growth rates remained unaffected. Moreover, PEG-treated spores exhibited higher thermal tolerance compared to untreated ones. In the Bb + PEG treatment group, the hemocyte count, encapsulation and melanization activities, and the expression of related regulatory genes were significantly lower than those in the Bb treatment group. Additionally, pathogen recognition, signal transduction, and humoral immunity effector genes expression were markedly suppressed in the Bb + PEG group. A significant reduction in the content of total amino acids, free fatty acids, glucose, and trehalose, alongside decreased expression of key regulatory genes in the tricarboxylic acid cycle and glycolysis pathways, was observed in the Bb + PEG treatment group. Furthermore, PEG enhanced Bb-induced apoptosis in H. cunea larvae, as evidenced by the upregulation of apoptosis-related genes. Notably, PEG alone did not significantly impact the innate immunity, energy metabolism, or apoptosis in H. cunea larvae. Overall, PEG exhibits considerable potential in amplifying Bb's insecticidal activity by directly optimizing spore performance and indirectly modulating the larvae's innate immunity, energy metabolism, and apoptosis.
期刊介绍:
Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance.
Research Areas Emphasized Include the Biochemistry and Physiology of:
• Comparative toxicity
• Mode of action
• Pathophysiology
• Plant growth regulators
• Resistance
• Other effects of pesticides on both parasites and hosts.