{"title":"韦尔型 f(Q,T)模型与ΛCDM 范式的统计与观测比较","authors":"Gaurav N. Gadbail , Himanshu Chaudhary , Amine Bouali , P.K. Sahoo","doi":"10.1016/j.nuclphysb.2024.116727","DOIUrl":null,"url":null,"abstract":"<div><div>We study the <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span> gravity in the framework of Weyl geometry (known as Weyl-type <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span> gravity), where <em>Q</em> denotes the non-metricity scalar, and <em>T</em> denotes the energy-momentum tensor trace. In this work, we consider the <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span> model, which is defined as <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo><mo>=</mo><mi>α</mi><msup><mrow><mi>Q</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><mfrac><mrow><mi>β</mi></mrow><mrow><mn>6</mn><msup><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mi>T</mi></math></span> and investigating two scenarios: (<em>I</em>) <span><math><mi>m</mi><mo>=</mo><mn>0</mn></math></span> (linear model) and <span><math><mo>(</mo><mi>I</mi><mi>I</mi><mo>)</mo></math></span> <span><math><mi>m</mi><mo>≠</mo><mn>0</mn></math></span> (nonlinear model). For both scenarios, we find the explicit solution for the field equations by using the barotropic equation of state as <span><math><mi>p</mi><mo>=</mo><mi>w</mi><mi>ρ</mi></math></span>, where <em>w</em> is the equation-of-state (EoS) parameter. Further, we study the obtained solutions statistically using the <span><math><mi>P</mi><mi>a</mi><mi>n</mi><mi>t</mi><mi>h</mi><mi>e</mi><mi>o</mi><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> (Without SHOES Calibrated) dataset with 1701 data points. For both models, the best-fit values of model parameters for <span><math><mn>1</mn><mo>−</mo><mi>σ</mi></math></span> and <span><math><mn>2</mn><mo>−</mo><mi>σ</mi></math></span> confidence level. The higher Hubble constant values in both models emphasize the presence of Tension. We statistically compare our models to the ΛCDM model using <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>m</mi><mi>i</mi><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>r</mi><mi>e</mi><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, <em>AIC</em>, <span><math><mi>Δ</mi><mi>A</mi><mi>I</mi><mi>C</mi></math></span>, <em>BIC</em> and <span><math><mi>Δ</mi><mi>B</mi><mi>I</mi><mi>C</mi></math></span>. We also examine cosmological parameters such as deceleration and EoS parameters to determine the current acceleration expansion of the Universe. Furthermore, we test our model using <em>Om</em> diagnostic and compare it to the ΛCDM model to determine its dark energy profile. Finally, we draw the conclusion that statistically speaking, both linear and nonlinear models show good compatibility with the ΛCDM model.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1009 ","pages":"Article 116727"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical and observation comparison of Weyl-type f(Q,T) models with the ΛCDM paradigm\",\"authors\":\"Gaurav N. Gadbail , Himanshu Chaudhary , Amine Bouali , P.K. Sahoo\",\"doi\":\"10.1016/j.nuclphysb.2024.116727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span> gravity in the framework of Weyl geometry (known as Weyl-type <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span> gravity), where <em>Q</em> denotes the non-metricity scalar, and <em>T</em> denotes the energy-momentum tensor trace. In this work, we consider the <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span> model, which is defined as <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>,</mo><mi>T</mi><mo>)</mo><mo>=</mo><mi>α</mi><msup><mrow><mi>Q</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><mfrac><mrow><mi>β</mi></mrow><mrow><mn>6</mn><msup><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mi>T</mi></math></span> and investigating two scenarios: (<em>I</em>) <span><math><mi>m</mi><mo>=</mo><mn>0</mn></math></span> (linear model) and <span><math><mo>(</mo><mi>I</mi><mi>I</mi><mo>)</mo></math></span> <span><math><mi>m</mi><mo>≠</mo><mn>0</mn></math></span> (nonlinear model). For both scenarios, we find the explicit solution for the field equations by using the barotropic equation of state as <span><math><mi>p</mi><mo>=</mo><mi>w</mi><mi>ρ</mi></math></span>, where <em>w</em> is the equation-of-state (EoS) parameter. Further, we study the obtained solutions statistically using the <span><math><mi>P</mi><mi>a</mi><mi>n</mi><mi>t</mi><mi>h</mi><mi>e</mi><mi>o</mi><msup><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> (Without SHOES Calibrated) dataset with 1701 data points. For both models, the best-fit values of model parameters for <span><math><mn>1</mn><mo>−</mo><mi>σ</mi></math></span> and <span><math><mn>2</mn><mo>−</mo><mi>σ</mi></math></span> confidence level. The higher Hubble constant values in both models emphasize the presence of Tension. We statistically compare our models to the ΛCDM model using <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>m</mi><mi>i</mi><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>r</mi><mi>e</mi><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, <em>AIC</em>, <span><math><mi>Δ</mi><mi>A</mi><mi>I</mi><mi>C</mi></math></span>, <em>BIC</em> and <span><math><mi>Δ</mi><mi>B</mi><mi>I</mi><mi>C</mi></math></span>. We also examine cosmological parameters such as deceleration and EoS parameters to determine the current acceleration expansion of the Universe. Furthermore, we test our model using <em>Om</em> diagnostic and compare it to the ΛCDM model to determine its dark energy profile. Finally, we draw the conclusion that statistically speaking, both linear and nonlinear models show good compatibility with the ΛCDM model.</div></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1009 \",\"pages\":\"Article 116727\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321324002931\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324002931","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Statistical and observation comparison of Weyl-type f(Q,T) models with the ΛCDM paradigm
We study the gravity in the framework of Weyl geometry (known as Weyl-type gravity), where Q denotes the non-metricity scalar, and T denotes the energy-momentum tensor trace. In this work, we consider the model, which is defined as and investigating two scenarios: (I) (linear model) and (nonlinear model). For both scenarios, we find the explicit solution for the field equations by using the barotropic equation of state as , where w is the equation-of-state (EoS) parameter. Further, we study the obtained solutions statistically using the (Without SHOES Calibrated) dataset with 1701 data points. For both models, the best-fit values of model parameters for and confidence level. The higher Hubble constant values in both models emphasize the presence of Tension. We statistically compare our models to the ΛCDM model using , , AIC, , BIC and . We also examine cosmological parameters such as deceleration and EoS parameters to determine the current acceleration expansion of the Universe. Furthermore, we test our model using Om diagnostic and compare it to the ΛCDM model to determine its dark energy profile. Finally, we draw the conclusion that statistically speaking, both linear and nonlinear models show good compatibility with the ΛCDM model.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.