{"title":"有界域的对数索波列夫不等式及其在漂移扩散方程中的应用","authors":"Elie Abdo , Fizay-Noah Lee","doi":"10.1016/j.jfa.2024.110716","DOIUrl":null,"url":null,"abstract":"<div><div>We prove logarithmic Sobolev inequalities on higher-dimensional bounded smooth domains based on novel Gagliardo-Nirenberg type interpolation inequalities. Moreover, we use them to address the long-time dynamics of some nonlinear nonlocal drift-diffusion models and prove the exponential decay of their solutions to constant steady states.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logarithmic Sobolev inequalities for bounded domains and applications to drift-diffusion equations\",\"authors\":\"Elie Abdo , Fizay-Noah Lee\",\"doi\":\"10.1016/j.jfa.2024.110716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove logarithmic Sobolev inequalities on higher-dimensional bounded smooth domains based on novel Gagliardo-Nirenberg type interpolation inequalities. Moreover, we use them to address the long-time dynamics of some nonlinear nonlocal drift-diffusion models and prove the exponential decay of their solutions to constant steady states.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002212362400404X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362400404X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Logarithmic Sobolev inequalities for bounded domains and applications to drift-diffusion equations
We prove logarithmic Sobolev inequalities on higher-dimensional bounded smooth domains based on novel Gagliardo-Nirenberg type interpolation inequalities. Moreover, we use them to address the long-time dynamics of some nonlinear nonlocal drift-diffusion models and prove the exponential decay of their solutions to constant steady states.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis