有界域的对数索波列夫不等式及其在漂移扩散方程中的应用

IF 1.7 2区 数学 Q1 MATHEMATICS
Elie Abdo , Fizay-Noah Lee
{"title":"有界域的对数索波列夫不等式及其在漂移扩散方程中的应用","authors":"Elie Abdo ,&nbsp;Fizay-Noah Lee","doi":"10.1016/j.jfa.2024.110716","DOIUrl":null,"url":null,"abstract":"<div><div>We prove logarithmic Sobolev inequalities on higher-dimensional bounded smooth domains based on novel Gagliardo-Nirenberg type interpolation inequalities. Moreover, we use them to address the long-time dynamics of some nonlinear nonlocal drift-diffusion models and prove the exponential decay of their solutions to constant steady states.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logarithmic Sobolev inequalities for bounded domains and applications to drift-diffusion equations\",\"authors\":\"Elie Abdo ,&nbsp;Fizay-Noah Lee\",\"doi\":\"10.1016/j.jfa.2024.110716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove logarithmic Sobolev inequalities on higher-dimensional bounded smooth domains based on novel Gagliardo-Nirenberg type interpolation inequalities. Moreover, we use them to address the long-time dynamics of some nonlinear nonlocal drift-diffusion models and prove the exponential decay of their solutions to constant steady states.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002212362400404X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362400404X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们基于新颖的 Gagliardo-Nirenberg 型插值不等式,证明了高维有界光滑域上的对数 Sobolev 不等式。此外,我们用它们来解决一些非线性非局部漂移扩散模型的长期动力学问题,并证明了它们的解的指数衰减到恒定稳态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logarithmic Sobolev inequalities for bounded domains and applications to drift-diffusion equations
We prove logarithmic Sobolev inequalities on higher-dimensional bounded smooth domains based on novel Gagliardo-Nirenberg type interpolation inequalities. Moreover, we use them to address the long-time dynamics of some nonlinear nonlocal drift-diffusion models and prove the exponential decay of their solutions to constant steady states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信