确定用于模拟耐热合金小冲压试验的 Gurson-Tvergaard-Needleman 损伤模型参数

IF 3 2区 工程技术 Q2 ENGINEERING, MECHANICAL
Qiwen Li , Lei Zhao , Xun Wang , Lianyong Xu , Yongdian Han
{"title":"确定用于模拟耐热合金小冲压试验的 Gurson-Tvergaard-Needleman 损伤模型参数","authors":"Qiwen Li ,&nbsp;Lei Zhao ,&nbsp;Xun Wang ,&nbsp;Lianyong Xu ,&nbsp;Yongdian Han","doi":"10.1016/j.ijpvp.2024.105348","DOIUrl":null,"url":null,"abstract":"<div><div>The small punch (SP) test is utilized to assess the mechanical characteristics and damage progression of heat-resistant alloys. The inverse finite element analysis method incorporating SP tests is a parameter identification method based on adjusting the accuracy of the simulated load-displacement curves. In this paper, the elastoplastic parameters of the Hollomon model and the damage parameters of the Gurson-Tvergaard-Needleman (GTN) model are determined based on the undamaged and damaged stages of the load-displacement curves, respectively. The whole stress-strain curves of the tested materials are then built using the results of finite element simulations of the tensile specimens of ZG15Cr2Mo1, P91, 316H, and Hastelloy X at room and elevated temperatures. Comparison with uniaxial tensile tests indicates that the simulated stress-strain curves closely resemble the experimental data from the tensile testing. In addition, the simulated damage evolution characteristics of the SP specimens are consistent with the mechanical model based on the actual deformation behavior. It is possible to comprehend the damage evolution process by analyzing the SP specimens’ stress and strain change characteristics.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"212 ","pages":"Article 105348"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of the Gurson-Tvergaard-Needleman damage model parameters for simulating small punch tests of heat-resistant alloys\",\"authors\":\"Qiwen Li ,&nbsp;Lei Zhao ,&nbsp;Xun Wang ,&nbsp;Lianyong Xu ,&nbsp;Yongdian Han\",\"doi\":\"10.1016/j.ijpvp.2024.105348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The small punch (SP) test is utilized to assess the mechanical characteristics and damage progression of heat-resistant alloys. The inverse finite element analysis method incorporating SP tests is a parameter identification method based on adjusting the accuracy of the simulated load-displacement curves. In this paper, the elastoplastic parameters of the Hollomon model and the damage parameters of the Gurson-Tvergaard-Needleman (GTN) model are determined based on the undamaged and damaged stages of the load-displacement curves, respectively. The whole stress-strain curves of the tested materials are then built using the results of finite element simulations of the tensile specimens of ZG15Cr2Mo1, P91, 316H, and Hastelloy X at room and elevated temperatures. Comparison with uniaxial tensile tests indicates that the simulated stress-strain curves closely resemble the experimental data from the tensile testing. In addition, the simulated damage evolution characteristics of the SP specimens are consistent with the mechanical model based on the actual deformation behavior. It is possible to comprehend the damage evolution process by analyzing the SP specimens’ stress and strain change characteristics.</div></div>\",\"PeriodicalId\":54946,\"journal\":{\"name\":\"International Journal of Pressure Vessels and Piping\",\"volume\":\"212 \",\"pages\":\"Article 105348\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pressure Vessels and Piping\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308016124002266\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016124002266","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

小冲压(SP)试验可用于评估耐热合金的机械特性和损伤进展。结合 SP 试验的反有限元分析方法是一种基于调整模拟载荷-位移曲线精度的参数识别方法。本文根据载荷-位移曲线的未损坏阶段和损坏阶段,分别确定了 Hollomon 模型的弹塑性参数和 Gurson-Tvergaard-Needleman (GTN) 模型的损坏参数。然后,利用 ZG15Cr2Mo1、P91、316H 和哈氏合金 X 拉伸试样在室温和高温下的有限元模拟结果,建立了测试材料的整体应力-应变曲线。与单轴拉伸试验的比较表明,模拟应力-应变曲线与拉伸试验的实验数据非常相似。此外,SP 试样的模拟损伤演变特征与基于实际变形行为的力学模型一致。通过分析 SP 试样的应力和应变变化特征,可以理解损伤演变过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of the Gurson-Tvergaard-Needleman damage model parameters for simulating small punch tests of heat-resistant alloys
The small punch (SP) test is utilized to assess the mechanical characteristics and damage progression of heat-resistant alloys. The inverse finite element analysis method incorporating SP tests is a parameter identification method based on adjusting the accuracy of the simulated load-displacement curves. In this paper, the elastoplastic parameters of the Hollomon model and the damage parameters of the Gurson-Tvergaard-Needleman (GTN) model are determined based on the undamaged and damaged stages of the load-displacement curves, respectively. The whole stress-strain curves of the tested materials are then built using the results of finite element simulations of the tensile specimens of ZG15Cr2Mo1, P91, 316H, and Hastelloy X at room and elevated temperatures. Comparison with uniaxial tensile tests indicates that the simulated stress-strain curves closely resemble the experimental data from the tensile testing. In addition, the simulated damage evolution characteristics of the SP specimens are consistent with the mechanical model based on the actual deformation behavior. It is possible to comprehend the damage evolution process by analyzing the SP specimens’ stress and strain change characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
13.30%
发文量
208
审稿时长
17 months
期刊介绍: Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants. The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome: • Pressure vessel engineering • Structural integrity assessment • Design methods • Codes and standards • Fabrication and welding • Materials properties requirements • Inspection and quality management • Maintenance and life extension • Ageing and environmental effects • Life management Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time. International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信