Qian Zhai , Dong Guo , Enyi Zhou , Chunling Lu , Dongchao Qiu , Gaobin Liu , Bingbing Niu , Biao Wang
{"title":"掺杂 Zr 和 Y 的 SrFe0.8Zr0.1Y0.1O3-δ 包晶氧化物作为一种稳定、高性能的对称电极用于固体氧化物电池","authors":"Qian Zhai , Dong Guo , Enyi Zhou , Chunling Lu , Dongchao Qiu , Gaobin Liu , Bingbing Niu , Biao Wang","doi":"10.1016/j.materresbull.2024.113157","DOIUrl":null,"url":null,"abstract":"<div><div><strong>Symmetrical solid oxide cells (SSOCs), which use the same material for both anode and cathode, simplify the cell fabrication process and effectively resist carbon deposition and sulfur poisoning</strong>. In this study, Zr, Y co-doped SrFe<sub>0.8</sub>Zr<sub>0.1</sub>Y<sub>0.1</sub>O<sub>3-δ</sub> (SFZY) perovskite oxide is <strong>synthesized</strong> and evaluated its properties as an SSOFCs electrode. Density functional theory (DFT) indicates that the <strong>local state density</strong> of SFZY is lower than that of SrFeO<sub>3-δ</sub> (SFO). SFZY has good chemical compatibility with La<sub>0.8</sub>Sr<sub>0.2</sub>Ga<sub>0.83</sub>Mg<sub>0.17</sub>O<sub>3−δ</sub> (LSGM) electrolyte below cell operating temperature. Zr, Y co-doped SrFe<sub>0.8</sub>Zr<sub>0.1</sub>Y<sub>0.1</sub>O<sub>3-δ</sub> maintains structural stability in H<sub>2</sub> atmosphere. At 750 ℃, the polarization resistance (Rp) of SFZY is 0.11 and 1.06 Ω cm<sup>2</sup> in air and hydrogen atmosphere, respectively. <strong>During the Rp stability test,</strong> SFZY exhibits better stability than that of SrFeO<sub>3-δ</sub> in air and hydrogen atmosphere. At 750 ℃, the maximum power density of SFZY/LSGM/SFZY fuel cell reaches 420.1 and 258.31 mWcm<sup>−2</sup> using H<sub>2</sub> and wet C<sub>3</sub>H<sub>8</sub> as fuel, respectively. In electrolytic mode, the current density of SFZY/LSGM/SFZY electrolysis cell reaches -0.55 A cm<sup>−2</sup> at 1.3 V for electrolysis of <strong>pure</strong> CO<sub>2</sub> at 750 ℃. In summary, SFZY has a great potential as SSOCs electrode.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113157"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zr and Y co-doped SrFe0.8Zr0.1Y0.1O3-δ perovskite oxide as a stable, high-performance symmetrical electrode for solid oxide cells\",\"authors\":\"Qian Zhai , Dong Guo , Enyi Zhou , Chunling Lu , Dongchao Qiu , Gaobin Liu , Bingbing Niu , Biao Wang\",\"doi\":\"10.1016/j.materresbull.2024.113157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><strong>Symmetrical solid oxide cells (SSOCs), which use the same material for both anode and cathode, simplify the cell fabrication process and effectively resist carbon deposition and sulfur poisoning</strong>. In this study, Zr, Y co-doped SrFe<sub>0.8</sub>Zr<sub>0.1</sub>Y<sub>0.1</sub>O<sub>3-δ</sub> (SFZY) perovskite oxide is <strong>synthesized</strong> and evaluated its properties as an SSOFCs electrode. Density functional theory (DFT) indicates that the <strong>local state density</strong> of SFZY is lower than that of SrFeO<sub>3-δ</sub> (SFO). SFZY has good chemical compatibility with La<sub>0.8</sub>Sr<sub>0.2</sub>Ga<sub>0.83</sub>Mg<sub>0.17</sub>O<sub>3−δ</sub> (LSGM) electrolyte below cell operating temperature. Zr, Y co-doped SrFe<sub>0.8</sub>Zr<sub>0.1</sub>Y<sub>0.1</sub>O<sub>3-δ</sub> maintains structural stability in H<sub>2</sub> atmosphere. At 750 ℃, the polarization resistance (Rp) of SFZY is 0.11 and 1.06 Ω cm<sup>2</sup> in air and hydrogen atmosphere, respectively. <strong>During the Rp stability test,</strong> SFZY exhibits better stability than that of SrFeO<sub>3-δ</sub> in air and hydrogen atmosphere. At 750 ℃, the maximum power density of SFZY/LSGM/SFZY fuel cell reaches 420.1 and 258.31 mWcm<sup>−2</sup> using H<sub>2</sub> and wet C<sub>3</sub>H<sub>8</sub> as fuel, respectively. In electrolytic mode, the current density of SFZY/LSGM/SFZY electrolysis cell reaches -0.55 A cm<sup>−2</sup> at 1.3 V for electrolysis of <strong>pure</strong> CO<sub>2</sub> at 750 ℃. In summary, SFZY has a great potential as SSOCs electrode.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"182 \",\"pages\":\"Article 113157\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540824004872\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824004872","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Zr and Y co-doped SrFe0.8Zr0.1Y0.1O3-δ perovskite oxide as a stable, high-performance symmetrical electrode for solid oxide cells
Symmetrical solid oxide cells (SSOCs), which use the same material for both anode and cathode, simplify the cell fabrication process and effectively resist carbon deposition and sulfur poisoning. In this study, Zr, Y co-doped SrFe0.8Zr0.1Y0.1O3-δ (SFZY) perovskite oxide is synthesized and evaluated its properties as an SSOFCs electrode. Density functional theory (DFT) indicates that the local state density of SFZY is lower than that of SrFeO3-δ (SFO). SFZY has good chemical compatibility with La0.8Sr0.2Ga0.83Mg0.17O3−δ (LSGM) electrolyte below cell operating temperature. Zr, Y co-doped SrFe0.8Zr0.1Y0.1O3-δ maintains structural stability in H2 atmosphere. At 750 ℃, the polarization resistance (Rp) of SFZY is 0.11 and 1.06 Ω cm2 in air and hydrogen atmosphere, respectively. During the Rp stability test, SFZY exhibits better stability than that of SrFeO3-δ in air and hydrogen atmosphere. At 750 ℃, the maximum power density of SFZY/LSGM/SFZY fuel cell reaches 420.1 and 258.31 mWcm−2 using H2 and wet C3H8 as fuel, respectively. In electrolytic mode, the current density of SFZY/LSGM/SFZY electrolysis cell reaches -0.55 A cm−2 at 1.3 V for electrolysis of pure CO2 at 750 ℃. In summary, SFZY has a great potential as SSOCs electrode.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.