Simin Li , Lemin Li , Hang Yang , Tianshuo Sui , Fengbing Tang , Jingbo Mu , Ziran Chang
{"title":"通过 NiO/NiCo2O4 和碳层的异质结构耦合增强光催化的界面电荷转移","authors":"Simin Li , Lemin Li , Hang Yang , Tianshuo Sui , Fengbing Tang , Jingbo Mu , Ziran Chang","doi":"10.1016/j.jpcs.2024.112404","DOIUrl":null,"url":null,"abstract":"<div><div>Constructing heterogeneous composite materials is a promising strategy for enhancing photocatalytic performance. In this study, the calcination method was employed to coat a carbon layer onto the surface of quartz sand. Additionally, NiO/NiCo<sub>2</sub>O<sub>4</sub> heterostructures were loaded onto the carbon layer to facilitate charge transfer and enhance photo-generated electron yield. The carefully designed QSC@NiO/NiCo<sub>2</sub>O<sub>4</sub> heterojunction possesses an efficient interface charge transfer channel, thereby improving contaminant degradation capacity. The results demonstrated that under 120 min of light exposure, the removal efficiencies for RhB and MB reached 94.75 % and 93.55 %, respectively. After undergoing 5 cycles, both RhB and MB exhibited consistently high elimination rates with values of 83.74 % and 77.42 %, respectively. Furthermore, tapping experiments were conducted to explore the mechanism of photocatalytic degradation.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112404"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced interface charge transfer through heterostructure coupling of NiO/NiCo2O4 and carbon layer for photocatalysis\",\"authors\":\"Simin Li , Lemin Li , Hang Yang , Tianshuo Sui , Fengbing Tang , Jingbo Mu , Ziran Chang\",\"doi\":\"10.1016/j.jpcs.2024.112404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Constructing heterogeneous composite materials is a promising strategy for enhancing photocatalytic performance. In this study, the calcination method was employed to coat a carbon layer onto the surface of quartz sand. Additionally, NiO/NiCo<sub>2</sub>O<sub>4</sub> heterostructures were loaded onto the carbon layer to facilitate charge transfer and enhance photo-generated electron yield. The carefully designed QSC@NiO/NiCo<sub>2</sub>O<sub>4</sub> heterojunction possesses an efficient interface charge transfer channel, thereby improving contaminant degradation capacity. The results demonstrated that under 120 min of light exposure, the removal efficiencies for RhB and MB reached 94.75 % and 93.55 %, respectively. After undergoing 5 cycles, both RhB and MB exhibited consistently high elimination rates with values of 83.74 % and 77.42 %, respectively. Furthermore, tapping experiments were conducted to explore the mechanism of photocatalytic degradation.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"197 \",\"pages\":\"Article 112404\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724005390\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005390","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced interface charge transfer through heterostructure coupling of NiO/NiCo2O4 and carbon layer for photocatalysis
Constructing heterogeneous composite materials is a promising strategy for enhancing photocatalytic performance. In this study, the calcination method was employed to coat a carbon layer onto the surface of quartz sand. Additionally, NiO/NiCo2O4 heterostructures were loaded onto the carbon layer to facilitate charge transfer and enhance photo-generated electron yield. The carefully designed QSC@NiO/NiCo2O4 heterojunction possesses an efficient interface charge transfer channel, thereby improving contaminant degradation capacity. The results demonstrated that under 120 min of light exposure, the removal efficiencies for RhB and MB reached 94.75 % and 93.55 %, respectively. After undergoing 5 cycles, both RhB and MB exhibited consistently high elimination rates with values of 83.74 % and 77.42 %, respectively. Furthermore, tapping experiments were conducted to explore the mechanism of photocatalytic degradation.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.