对耐氟细菌进行生物勘探,以了解它们在促进蚕豆抗氟胁迫方面的乐观贡献

IF 3.4 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Priya Katiyar , Neha Pandey , S. Keshavkant
{"title":"对耐氟细菌进行生物勘探,以了解它们在促进蚕豆抗氟胁迫方面的乐观贡献","authors":"Priya Katiyar ,&nbsp;Neha Pandey ,&nbsp;S. Keshavkant","doi":"10.1016/j.bcab.2024.103412","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the effects of fluoride (F) pollution in numerous ecosystems such as groundwater, soil, <em>etc</em>. Have become a major issue worldwide. This increase in F pollution is a direct consequence of the unbridled use of fertilizers in agricultural and several other human activities that require immediate and appropriate action. Therefore, this manuscript reveals important findings on the efficacy of bacteria isolated from agricultural fields in central Chhattisgarh in manifesting resistance to F and in reversing the F-induced oxidative damage in susceptible <em>Oryza sativa</em> L, (Var. MTU1010). Chronic exposure of <em>Oryza sativa</em> L. to sodium fluoride (NaF) (50 mg L<sup>−1</sup>) severely impeded growth and various physiological parameters such as germination percentage, biomass and root and shoot length and stimulated the formation of reactive oxygen species (ROS), which enhanced electrolyte leakage and formation of cytotoxic products like malondialdehyde. To this end, potential bacterial strains, namely MT2A, MT3A, MT4A, and Du3A were isolated, screened for various plant growth promoting (PGP) traits and used to explore their efficiency to mitigate F toxicity in <em>Oryza sativa</em> L. <em>in vivo.</em> The seedlings inoculated with the bacterial strains showed significant development as evidenced by an increase in root and shoot length, biomass and chlorophyll content. Additionally, inoculation of these strains in combination with F stress significantly decreased oxidative stress by increasing the expression of protective genes encoding antioxidant enzymes and boosted agronomic traits remarkably. Overall, the manuscript demonstrates the pivotal role played by the isolated bacteria in abating ill effects of F in the <em>Oryza sativa</em> L. seedlings and proves their potential as protective bioagents against F stress.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-prospecting fluoride tolerant bacteria for their optimistic contribution in instigating resilience against fluoride stress in Oryza sativa L.\",\"authors\":\"Priya Katiyar ,&nbsp;Neha Pandey ,&nbsp;S. Keshavkant\",\"doi\":\"10.1016/j.bcab.2024.103412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, the effects of fluoride (F) pollution in numerous ecosystems such as groundwater, soil, <em>etc</em>. Have become a major issue worldwide. This increase in F pollution is a direct consequence of the unbridled use of fertilizers in agricultural and several other human activities that require immediate and appropriate action. Therefore, this manuscript reveals important findings on the efficacy of bacteria isolated from agricultural fields in central Chhattisgarh in manifesting resistance to F and in reversing the F-induced oxidative damage in susceptible <em>Oryza sativa</em> L, (Var. MTU1010). Chronic exposure of <em>Oryza sativa</em> L. to sodium fluoride (NaF) (50 mg L<sup>−1</sup>) severely impeded growth and various physiological parameters such as germination percentage, biomass and root and shoot length and stimulated the formation of reactive oxygen species (ROS), which enhanced electrolyte leakage and formation of cytotoxic products like malondialdehyde. To this end, potential bacterial strains, namely MT2A, MT3A, MT4A, and Du3A were isolated, screened for various plant growth promoting (PGP) traits and used to explore their efficiency to mitigate F toxicity in <em>Oryza sativa</em> L. <em>in vivo.</em> The seedlings inoculated with the bacterial strains showed significant development as evidenced by an increase in root and shoot length, biomass and chlorophyll content. Additionally, inoculation of these strains in combination with F stress significantly decreased oxidative stress by increasing the expression of protective genes encoding antioxidant enzymes and boosted agronomic traits remarkably. Overall, the manuscript demonstrates the pivotal role played by the isolated bacteria in abating ill effects of F in the <em>Oryza sativa</em> L. seedlings and proves their potential as protective bioagents against F stress.</div></div>\",\"PeriodicalId\":8774,\"journal\":{\"name\":\"Biocatalysis and agricultural biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocatalysis and agricultural biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878818124003967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818124003967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,氟化物(F)污染对地下水、土壤等众多生态系统的影响已成为世界性的重大问题。已成为全球范围内的一个主要问题。氟污染的增加是农业和其他一些人类活动中无节制使用化肥的直接后果,需要立即采取适当行动。因此,本手稿揭示了从恰蒂斯加尔邦中部农田中分离出的细菌在易感稻米(Oryza sativa L, (Var. MTU1010))中表现出抗性和逆转 F 诱导的氧化损伤方面的重要发现。Oryza sativa L.长期暴露于氟化钠(NaF)(50 mg L-1)中会严重影响其生长和各种生理参数,如发芽率、生物量、根和芽的长度,并刺激活性氧(ROS)的形成,从而增加电解质的泄漏和丙二醛等细胞毒性产物的形成。为此,我们分离了潜在的细菌菌株(即 MT2A、MT3A、MT4A 和 Du3A),筛选了它们的各种植物生长促进(PGP)特性,并利用它们来探索其在体内减轻旱金莲(Oryza sativa L.)F 毒性的效率。接种了这些细菌菌株的幼苗表现出显著的生长发育,表现为根长和芽长、生物量和叶绿素含量的增加。此外,接种这些菌株与 F 胁迫相结合,通过增加编码抗氧化酶的保护基因的表达,显著降低了氧化胁迫,并明显改善了农艺性状。总之,该手稿证明了分离出的细菌在减轻雌花胁迫对禾本科植物幼苗的不良影响方面所起的关键作用,并证明了它们作为抗雌花胁迫的保护性生物试剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bio-prospecting fluoride tolerant bacteria for their optimistic contribution in instigating resilience against fluoride stress in Oryza sativa L.
In recent years, the effects of fluoride (F) pollution in numerous ecosystems such as groundwater, soil, etc. Have become a major issue worldwide. This increase in F pollution is a direct consequence of the unbridled use of fertilizers in agricultural and several other human activities that require immediate and appropriate action. Therefore, this manuscript reveals important findings on the efficacy of bacteria isolated from agricultural fields in central Chhattisgarh in manifesting resistance to F and in reversing the F-induced oxidative damage in susceptible Oryza sativa L, (Var. MTU1010). Chronic exposure of Oryza sativa L. to sodium fluoride (NaF) (50 mg L−1) severely impeded growth and various physiological parameters such as germination percentage, biomass and root and shoot length and stimulated the formation of reactive oxygen species (ROS), which enhanced electrolyte leakage and formation of cytotoxic products like malondialdehyde. To this end, potential bacterial strains, namely MT2A, MT3A, MT4A, and Du3A were isolated, screened for various plant growth promoting (PGP) traits and used to explore their efficiency to mitigate F toxicity in Oryza sativa L. in vivo. The seedlings inoculated with the bacterial strains showed significant development as evidenced by an increase in root and shoot length, biomass and chlorophyll content. Additionally, inoculation of these strains in combination with F stress significantly decreased oxidative stress by increasing the expression of protective genes encoding antioxidant enzymes and boosted agronomic traits remarkably. Overall, the manuscript demonstrates the pivotal role played by the isolated bacteria in abating ill effects of F in the Oryza sativa L. seedlings and proves their potential as protective bioagents against F stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biocatalysis and agricultural biotechnology
Biocatalysis and agricultural biotechnology Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
7.70
自引率
2.50%
发文量
308
审稿时长
48 days
期刊介绍: Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信