Catalin Stefan Teodorescu, Andrew West, Barry Lennox
{"title":"具有嵌入式随机功能的贝叶斯优化技术,用于增强机器人的避障能力","authors":"Catalin Stefan Teodorescu, Andrew West, Barry Lennox","doi":"10.1016/j.conengprac.2024.106141","DOIUrl":null,"url":null,"abstract":"<div><div>Designing an obstacle avoidance algorithm that incorporates the stochastic nature of human–robot-environment interactions is challenging. In high risk activities, such as those found in nuclear environments, a comprehensive approach towards handling uncertainty is essential. In this article, in the context of safe teleoperation of robots, an automated iterative sampling procedure based on Bayesian optimization is proposed, where the robot is trained to predict the behaviour of a human operator. Specifically, a Gaussian process regression model is used to learn an effective representation of a safe stop manoeuvre, required for implementing an obstacle avoidance shared control algorithm. This model is then used to predict the future time duration to execute a safe stop manoeuvre, given the current real-world circumstances. The control algorithm expects this value to be reasonably high; if not, it will gradually reduce the human operator’s authority. A distinctive attribute of the proposed method is the use of statistical confidence metrics as tuning parameters, intended to provide a statistical indication of whether or not an obstacle will be avoided. The proof-of-concept experiments were carried out using three robotic platforms suited for use in nuclear robotics, an amphibious SuperDroid HD2 robot equipped with a Velodyne VLP16 (a 3D lidar), an AgileX Scout Mini R&D Pro land robot fitted with a Realsense D435 depth camera, and a Husarion ROSBot 2.0 Pro supplied with an RPLIDAR A3 (a 2D lidar). The test results show that the proposed Bayesian optimization method uses 8 times less data compared to an exhaustive grid approach, and that it provides a robot-agnostic, robust obstacle avoidance.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian optimization with embedded stochastic functionality for enhanced robotic obstacle avoidance\",\"authors\":\"Catalin Stefan Teodorescu, Andrew West, Barry Lennox\",\"doi\":\"10.1016/j.conengprac.2024.106141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Designing an obstacle avoidance algorithm that incorporates the stochastic nature of human–robot-environment interactions is challenging. In high risk activities, such as those found in nuclear environments, a comprehensive approach towards handling uncertainty is essential. In this article, in the context of safe teleoperation of robots, an automated iterative sampling procedure based on Bayesian optimization is proposed, where the robot is trained to predict the behaviour of a human operator. Specifically, a Gaussian process regression model is used to learn an effective representation of a safe stop manoeuvre, required for implementing an obstacle avoidance shared control algorithm. This model is then used to predict the future time duration to execute a safe stop manoeuvre, given the current real-world circumstances. The control algorithm expects this value to be reasonably high; if not, it will gradually reduce the human operator’s authority. A distinctive attribute of the proposed method is the use of statistical confidence metrics as tuning parameters, intended to provide a statistical indication of whether or not an obstacle will be avoided. The proof-of-concept experiments were carried out using three robotic platforms suited for use in nuclear robotics, an amphibious SuperDroid HD2 robot equipped with a Velodyne VLP16 (a 3D lidar), an AgileX Scout Mini R&D Pro land robot fitted with a Realsense D435 depth camera, and a Husarion ROSBot 2.0 Pro supplied with an RPLIDAR A3 (a 2D lidar). The test results show that the proposed Bayesian optimization method uses 8 times less data compared to an exhaustive grid approach, and that it provides a robot-agnostic, robust obstacle avoidance.</div></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124003009\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124003009","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Bayesian optimization with embedded stochastic functionality for enhanced robotic obstacle avoidance
Designing an obstacle avoidance algorithm that incorporates the stochastic nature of human–robot-environment interactions is challenging. In high risk activities, such as those found in nuclear environments, a comprehensive approach towards handling uncertainty is essential. In this article, in the context of safe teleoperation of robots, an automated iterative sampling procedure based on Bayesian optimization is proposed, where the robot is trained to predict the behaviour of a human operator. Specifically, a Gaussian process regression model is used to learn an effective representation of a safe stop manoeuvre, required for implementing an obstacle avoidance shared control algorithm. This model is then used to predict the future time duration to execute a safe stop manoeuvre, given the current real-world circumstances. The control algorithm expects this value to be reasonably high; if not, it will gradually reduce the human operator’s authority. A distinctive attribute of the proposed method is the use of statistical confidence metrics as tuning parameters, intended to provide a statistical indication of whether or not an obstacle will be avoided. The proof-of-concept experiments were carried out using three robotic platforms suited for use in nuclear robotics, an amphibious SuperDroid HD2 robot equipped with a Velodyne VLP16 (a 3D lidar), an AgileX Scout Mini R&D Pro land robot fitted with a Realsense D435 depth camera, and a Husarion ROSBot 2.0 Pro supplied with an RPLIDAR A3 (a 2D lidar). The test results show that the proposed Bayesian optimization method uses 8 times less data compared to an exhaustive grid approach, and that it provides a robot-agnostic, robust obstacle avoidance.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.