Date-Jimbo-Kashiwara-Miwa 方程的共振孤子相互作用

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Yu-Qiang Yuan , Xiang Luo , Zhong Du
{"title":"Date-Jimbo-Kashiwara-Miwa 方程的共振孤子相互作用","authors":"Yu-Qiang Yuan ,&nbsp;Xiang Luo ,&nbsp;Zhong Du","doi":"10.1016/j.aml.2024.109348","DOIUrl":null,"url":null,"abstract":"<div><div>Investigated in this paper is the resonant soliton interactions for the (<span><math><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></math></span>)-dimensional Date–Jimbo–Kashiwara–Miwa equation. A comprehensive classification of these interactions is presented, based on the exact expression of resonant soliton branches derived from asymptotic analysis. Two types of resonant interactions between two solitons are identified, characterized by the parameter <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span>, which directly determines the phase shift. One-resonant and two-resonant three-soliton interactions are discussed, in which certain new soliton branches are revealed. Some graphical analyses are provided to illustrate these resonant interactions.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resonant soliton interaction for the Date–Jimbo–Kashiwara–Miwa equation\",\"authors\":\"Yu-Qiang Yuan ,&nbsp;Xiang Luo ,&nbsp;Zhong Du\",\"doi\":\"10.1016/j.aml.2024.109348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Investigated in this paper is the resonant soliton interactions for the (<span><math><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></math></span>)-dimensional Date–Jimbo–Kashiwara–Miwa equation. A comprehensive classification of these interactions is presented, based on the exact expression of resonant soliton branches derived from asymptotic analysis. Two types of resonant interactions between two solitons are identified, characterized by the parameter <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span>, which directly determines the phase shift. One-resonant and two-resonant three-soliton interactions are discussed, in which certain new soliton branches are revealed. Some graphical analyses are provided to illustrate these resonant interactions.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003689\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003689","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究的是 (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa 方程的共振孤子相互作用。根据渐近分析得出的共振孤子分支的精确表达,对这些相互作用进行了全面分类。根据直接决定相移的参数 Aij,确定了两个孤子之间的两种共振相互作用。讨论了单共振和双共振三孤子相互作用,其中揭示了某些新的孤子分支。还提供了一些图形分析来说明这些共振相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resonant soliton interaction for the Date–Jimbo–Kashiwara–Miwa equation
Investigated in this paper is the resonant soliton interactions for the (2+1)-dimensional Date–Jimbo–Kashiwara–Miwa equation. A comprehensive classification of these interactions is presented, based on the exact expression of resonant soliton branches derived from asymptotic analysis. Two types of resonant interactions between two solitons are identified, characterized by the parameter Aij, which directly determines the phase shift. One-resonant and two-resonant three-soliton interactions are discussed, in which certain new soliton branches are revealed. Some graphical analyses are provided to illustrate these resonant interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信