冷等离子体中水磁波奇点的形成

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
{"title":"冷等离子体中水磁波奇点的形成","authors":"","doi":"10.1016/j.aml.2024.109344","DOIUrl":null,"url":null,"abstract":"<div><div>We study <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> blow-up of the compressible fluid model introduced by Gardner and Morikawa, which describes the dynamics of a magnetized cold plasma. We propose sufficient conditions that lead to <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> blow-up. In particular, we find that smooth solutions can break down in finite time even if the gradient of initial velocity is identically zero. The density and the gradient of the velocity become unbounded as time approaches the lifespan of the smooth solution. The Lagrangian formulation reduces the singularity formation problem to finding a zero of the associated second-order ODE.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singularity formation of hydromagnetic waves in cold plasma\",\"authors\":\"\",\"doi\":\"10.1016/j.aml.2024.109344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> blow-up of the compressible fluid model introduced by Gardner and Morikawa, which describes the dynamics of a magnetized cold plasma. We propose sufficient conditions that lead to <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> blow-up. In particular, we find that smooth solutions can break down in finite time even if the gradient of initial velocity is identically zero. The density and the gradient of the velocity become unbounded as time approaches the lifespan of the smooth solution. The Lagrangian formulation reduces the singularity formation problem to finding a zero of the associated second-order ODE.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003641\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003641","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了加德纳和森川提出的可压缩流体模型的 C1 井喷,该模型描述了磁化冷等离子体的动力学。我们提出了导致 C1 井喷的充分条件。特别是,我们发现即使初速度梯度为同零,光滑解也能在有限时间内崩溃。当时间接近平滑解的寿命时,密度和速度梯度会变得无边界。拉格朗日公式将奇点形成问题简化为寻找相关二阶 ODE 的零点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singularity formation of hydromagnetic waves in cold plasma
We study C1 blow-up of the compressible fluid model introduced by Gardner and Morikawa, which describes the dynamics of a magnetized cold plasma. We propose sufficient conditions that lead to C1 blow-up. In particular, we find that smooth solutions can break down in finite time even if the gradient of initial velocity is identically zero. The density and the gradient of the velocity become unbounded as time approaches the lifespan of the smooth solution. The Lagrangian formulation reduces the singularity formation problem to finding a zero of the associated second-order ODE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信