局部分数低通输电线模型的有效计算方法

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Kang-Jia Wang
{"title":"局部分数低通输电线模型的有效计算方法","authors":"Kang-Jia Wang","doi":"10.1016/j.aej.2024.07.021","DOIUrl":null,"url":null,"abstract":"<div><div>In this research, a new fractional low-pass electrical transmission lines model (LPETLM) described by the local fractional derivative (LFD) is derived for the first time. By defining the Mittag-Leffler function (MLF) on the Cantor set (CS), two special functions, namely, the<span><math><mrow><mi>L</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>δ</mi></mrow></msub></mrow></math></span>-function and <span><math><mrow><mi>L</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>δ</mi></mrow></msub></mrow></math></span>-function, are extracted to develop an auxiliary function, which is employed to look for the non-differentiable (ND) exact solutions (ESs) together with Yang’s non-differentiable transformation. Eight sets of the ESs are obtained and the corresponding dynamic performances on the CS for <span><math><mrow><mi>γ</mi><mo>=</mo><mspace></mspace><mi>ln</mi><mspace></mspace><mn>2</mn><mo>/</mo><mspace></mspace><mi>ln</mi><mspace></mspace><mn>3</mn></mrow></math></span> are displayed. As expected, for <span><math><mrow><mi>γ</mi><mo>→</mo><mn>1</mn></mrow></math></span>, the ESs of the local fractional LPETLM become the ESs of the classic LPETLM and the outlines are also depicted graphically. The outcomes confirm that our new method is a promising tool to handle the local fractional PDEs in the electrical and electronic engineering.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"110 ","pages":"Pages 629-635"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An effective computational approach to the local fractional low-pass electrical transmission lines model\",\"authors\":\"Kang-Jia Wang\",\"doi\":\"10.1016/j.aej.2024.07.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this research, a new fractional low-pass electrical transmission lines model (LPETLM) described by the local fractional derivative (LFD) is derived for the first time. By defining the Mittag-Leffler function (MLF) on the Cantor set (CS), two special functions, namely, the<span><math><mrow><mi>L</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>δ</mi></mrow></msub></mrow></math></span>-function and <span><math><mrow><mi>L</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>δ</mi></mrow></msub></mrow></math></span>-function, are extracted to develop an auxiliary function, which is employed to look for the non-differentiable (ND) exact solutions (ESs) together with Yang’s non-differentiable transformation. Eight sets of the ESs are obtained and the corresponding dynamic performances on the CS for <span><math><mrow><mi>γ</mi><mo>=</mo><mspace></mspace><mi>ln</mi><mspace></mspace><mn>2</mn><mo>/</mo><mspace></mspace><mi>ln</mi><mspace></mspace><mn>3</mn></mrow></math></span> are displayed. As expected, for <span><math><mrow><mi>γ</mi><mo>→</mo><mn>1</mn></mrow></math></span>, the ESs of the local fractional LPETLM become the ESs of the classic LPETLM and the outlines are also depicted graphically. The outcomes confirm that our new method is a promising tool to handle the local fractional PDEs in the electrical and electronic engineering.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"110 \",\"pages\":\"Pages 629-635\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016824007439\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824007439","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究首次推导出一种用局部分数导数(LFD)描述的新分数低通输电线模型(LPETLM)。通过定义 Cantor 集(CS)上的 Mittag-Leffler 函数(MLF),提取出两个特殊函数,即 LTδ 函数和 LCδ 函数,从而建立了一个辅助函数,并利用该函数和杨氏无差异变换寻找无差异精确解(ES)。得到了八组 ES,并显示了 γ=ln2/ln3 时 CS 上相应的动态性能。不出所料,当γ→1 时,局部分数 LPETLM 的 ES 变成了经典 LPETLM 的 ES,其轮廓也用图形表示出来。这些结果证明,我们的新方法是处理电子电气工程中局部分式 PDE 的一种有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An effective computational approach to the local fractional low-pass electrical transmission lines model
In this research, a new fractional low-pass electrical transmission lines model (LPETLM) described by the local fractional derivative (LFD) is derived for the first time. By defining the Mittag-Leffler function (MLF) on the Cantor set (CS), two special functions, namely, theLTδ-function and LCδ-function, are extracted to develop an auxiliary function, which is employed to look for the non-differentiable (ND) exact solutions (ESs) together with Yang’s non-differentiable transformation. Eight sets of the ESs are obtained and the corresponding dynamic performances on the CS for γ=ln2/ln3 are displayed. As expected, for γ1, the ESs of the local fractional LPETLM become the ESs of the classic LPETLM and the outlines are also depicted graphically. The outcomes confirm that our new method is a promising tool to handle the local fractional PDEs in the electrical and electronic engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信