Xiaodong Hong , Wanke Chen , Zuwei Liao , Xiaoqiang Fan , Jingyuan Sun , Yao Yang , Chunhui Zhao , Jingdai Wang , Yongrong Yang
{"title":"气相聚乙烯工艺的稳态和动态模拟","authors":"Xiaodong Hong , Wanke Chen , Zuwei Liao , Xiaoqiang Fan , Jingyuan Sun , Yao Yang , Chunhui Zhao , Jingdai Wang , Yongrong Yang","doi":"10.1016/j.cjche.2024.07.026","DOIUrl":null,"url":null,"abstract":"<div><div>Gas-phase polyethylene (PE) processes are among the most important methods for PE production. A deeper understanding of the process characteristics and dynamic behavior, such as properties of PE and reactor stability, holds substantial interest for both academic researchers and industries. In this study, both steady-state and dynamic models for a gas-phase polyethylene process are established as a simulation platform, which can be used to study a variety of operation tasks for commercial solution polyethylene processes, such as new product development, process control and real-time optimization. The copolymerization kinetic parameters are fitted by industrial data. Additionally, a multi-reactor series model is developed to characterize the temperature distribution within the fluidized bed reactor. The accuracy in predicting melt index and density of the polymer, and the dynamic behavior of the developed models are verified by real plant data. Moreover, the dynamic simulation platform is applied to compare four practical control schemes for reactor temperature by a series of simulation experiments, since temperature control is important in industrial production. The results reveal that all four schemes effectively track the setpoint temperature. However, only the demineralized water temperature cascade control demonstrates excellent performance in handling disturbances from both the recycle gas subsystem and the heat exchange subsystem.</div></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":"75 ","pages":"Pages 110-120"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steady-state and dynamic simulation of gas phase polyethylene process\",\"authors\":\"Xiaodong Hong , Wanke Chen , Zuwei Liao , Xiaoqiang Fan , Jingyuan Sun , Yao Yang , Chunhui Zhao , Jingdai Wang , Yongrong Yang\",\"doi\":\"10.1016/j.cjche.2024.07.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gas-phase polyethylene (PE) processes are among the most important methods for PE production. A deeper understanding of the process characteristics and dynamic behavior, such as properties of PE and reactor stability, holds substantial interest for both academic researchers and industries. In this study, both steady-state and dynamic models for a gas-phase polyethylene process are established as a simulation platform, which can be used to study a variety of operation tasks for commercial solution polyethylene processes, such as new product development, process control and real-time optimization. The copolymerization kinetic parameters are fitted by industrial data. Additionally, a multi-reactor series model is developed to characterize the temperature distribution within the fluidized bed reactor. The accuracy in predicting melt index and density of the polymer, and the dynamic behavior of the developed models are verified by real plant data. Moreover, the dynamic simulation platform is applied to compare four practical control schemes for reactor temperature by a series of simulation experiments, since temperature control is important in industrial production. The results reveal that all four schemes effectively track the setpoint temperature. However, only the demineralized water temperature cascade control demonstrates excellent performance in handling disturbances from both the recycle gas subsystem and the heat exchange subsystem.</div></div>\",\"PeriodicalId\":9966,\"journal\":{\"name\":\"Chinese Journal of Chemical Engineering\",\"volume\":\"75 \",\"pages\":\"Pages 110-120\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1004954124003112\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954124003112","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Steady-state and dynamic simulation of gas phase polyethylene process
Gas-phase polyethylene (PE) processes are among the most important methods for PE production. A deeper understanding of the process characteristics and dynamic behavior, such as properties of PE and reactor stability, holds substantial interest for both academic researchers and industries. In this study, both steady-state and dynamic models for a gas-phase polyethylene process are established as a simulation platform, which can be used to study a variety of operation tasks for commercial solution polyethylene processes, such as new product development, process control and real-time optimization. The copolymerization kinetic parameters are fitted by industrial data. Additionally, a multi-reactor series model is developed to characterize the temperature distribution within the fluidized bed reactor. The accuracy in predicting melt index and density of the polymer, and the dynamic behavior of the developed models are verified by real plant data. Moreover, the dynamic simulation platform is applied to compare four practical control schemes for reactor temperature by a series of simulation experiments, since temperature control is important in industrial production. The results reveal that all four schemes effectively track the setpoint temperature. However, only the demineralized water temperature cascade control demonstrates excellent performance in handling disturbances from both the recycle gas subsystem and the heat exchange subsystem.
期刊介绍:
The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors.
The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.