{"title":"H2S和近红外光驱动的纳米马达通过加强对肿瘤代谢共生的破坏,诱导二硫化氢,实现抗癌靶向治疗","authors":"Shangqian Zhang, Jiaxuan Li, Xuan Hu, Zelong Chen, Junliang Dong, Chenhao Hu, Shuang Chao, Yinghua Lv, Yuxin Pei, Zhichao Pei","doi":"10.1016/j.cclet.2024.110314","DOIUrl":null,"url":null,"abstract":"<div><div>Disulfidptosis, a novel mechanism of programmed cell death through the disruption of tumor metabolic symbiosis (TMS), has showed tremendous potential in cancer therapy. However, the efficacy of disulfidptosis is limited by poor permeability of drugs in solid tumors. Herein, hydrogen sulfide (H<sub>2</sub>S) and near-infrared (NIR) light-driven nanomotors (denoted as HGPP) have been constructed to efficiently penetrate tumors and induce disulfidptosis. HGPP demonstrate glutathione (GSH)-responsive release of H<sub>2</sub>S, which combined with NIR light-induced photothermal effect drive HGPP movement to facilitate deep tumor penetration. The released H<sub>2</sub>S induces tumor acidosis and disrupts TMS, where disulfide accumulation following cell starvation leads to disulfidptosis. In addition, HGPP induce hepatoma specific cellular uptake and catalyze the conversion of glucose and oxygen to produce hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), leading to glucose starvation. Overall, this study has developed a multifunctional Janus nanomotor that provides a novel strategy for disulfidptosis-based solid tumor therapy.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 1","pages":"Article 110314"},"PeriodicalIF":9.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis\",\"authors\":\"Shangqian Zhang, Jiaxuan Li, Xuan Hu, Zelong Chen, Junliang Dong, Chenhao Hu, Shuang Chao, Yinghua Lv, Yuxin Pei, Zhichao Pei\",\"doi\":\"10.1016/j.cclet.2024.110314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Disulfidptosis, a novel mechanism of programmed cell death through the disruption of tumor metabolic symbiosis (TMS), has showed tremendous potential in cancer therapy. However, the efficacy of disulfidptosis is limited by poor permeability of drugs in solid tumors. Herein, hydrogen sulfide (H<sub>2</sub>S) and near-infrared (NIR) light-driven nanomotors (denoted as HGPP) have been constructed to efficiently penetrate tumors and induce disulfidptosis. HGPP demonstrate glutathione (GSH)-responsive release of H<sub>2</sub>S, which combined with NIR light-induced photothermal effect drive HGPP movement to facilitate deep tumor penetration. The released H<sub>2</sub>S induces tumor acidosis and disrupts TMS, where disulfide accumulation following cell starvation leads to disulfidptosis. In addition, HGPP induce hepatoma specific cellular uptake and catalyze the conversion of glucose and oxygen to produce hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), leading to glucose starvation. Overall, this study has developed a multifunctional Janus nanomotor that provides a novel strategy for disulfidptosis-based solid tumor therapy.</div></div>\",\"PeriodicalId\":10088,\"journal\":{\"name\":\"Chinese Chemical Letters\",\"volume\":\"36 1\",\"pages\":\"Article 110314\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Chemical Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001841724008337\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724008337","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis
Disulfidptosis, a novel mechanism of programmed cell death through the disruption of tumor metabolic symbiosis (TMS), has showed tremendous potential in cancer therapy. However, the efficacy of disulfidptosis is limited by poor permeability of drugs in solid tumors. Herein, hydrogen sulfide (H2S) and near-infrared (NIR) light-driven nanomotors (denoted as HGPP) have been constructed to efficiently penetrate tumors and induce disulfidptosis. HGPP demonstrate glutathione (GSH)-responsive release of H2S, which combined with NIR light-induced photothermal effect drive HGPP movement to facilitate deep tumor penetration. The released H2S induces tumor acidosis and disrupts TMS, where disulfide accumulation following cell starvation leads to disulfidptosis. In addition, HGPP induce hepatoma specific cellular uptake and catalyze the conversion of glucose and oxygen to produce hydrogen peroxide (H2O2), leading to glucose starvation. Overall, this study has developed a multifunctional Janus nanomotor that provides a novel strategy for disulfidptosis-based solid tumor therapy.
期刊介绍:
Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.