Weigang Yang , Mingao Li , Shulong Xiao , Yuyong Chen
{"title":"设计和研究具有新型双层耦合增强结构的强度-电导率 TiAl 基复合材料","authors":"Weigang Yang , Mingao Li , Shulong Xiao , Yuyong Chen","doi":"10.1016/j.msea.2024.147482","DOIUrl":null,"url":null,"abstract":"<div><div>TiAl matrix composites with a novel dual-layers couple reinforced structure have been designed and successfully prepared by the combination of plasma rotating electrode process (PREP) and spark plasma sintering (SPS) in this study. The dual-layers reinforced TiAl composites consisted of the fully lamellar TiAl matrix units that were reinforced by dispersed carbides and the outer reinforced network structures that were composed of TiB and Ti<sub>2</sub>AlC. The growth mechanisms of TiB and Ti<sub>2</sub>AlC in the outer network reinforced structures have been revealed. The orientation relationships were indicated as (0001)[11–20]<sub>Ti2AlC</sub>||(111)[10-1]<sub>TiAl</sub>, [011]<sub>TiB</sub>||[210]<sub>TiAl</sub> and [-100]<sub>TiB</sub>||[11–20]<sub>Ti2AlC</sub>. The introduction of dual-layers couple reinforced structures significantly enhanced the ultimate tensile strength (UTS) at 900 °C and the elongation at room temperature (RT). Especially, the composites with 0.5 wt% B<sub>4</sub>C addition represented the UTS and elongation as 424.36MPa/1.42 % at RT and 497.32MPa/4.12 % at 900 °C. The growths of outer network reinforced structures enhanced the connectivity of adjacent TiAl matrix units, and triggered off the transformation of fracture modes from intergranular to translamellar. Additionally, the plastic deformation of TiAl matrix composites mainly stemmed from γ phase and refined lamellae. The fractures usually propagated along the (101)<sub>TiB</sub> and (100)<sub>TiB</sub> planes in TiB crystals during the loading. Dislocations pile-ups led to the activation of slipping along the (0001)<sub>Ti2AlC</sub> in carbides, especially at high temperatures. The dual-layers couple reinforced structures resulted in the coordination of strengthening and toughening within TiAl matrix units and the interfaces, which contributed to the balance between the UTS at 900 °C and the elongation at RT of the composites.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"918 ","pages":"Article 147482"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and investigation of strength-ductility TiAl matrix composites with a novel dual-layers couple reinforced structure\",\"authors\":\"Weigang Yang , Mingao Li , Shulong Xiao , Yuyong Chen\",\"doi\":\"10.1016/j.msea.2024.147482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>TiAl matrix composites with a novel dual-layers couple reinforced structure have been designed and successfully prepared by the combination of plasma rotating electrode process (PREP) and spark plasma sintering (SPS) in this study. The dual-layers reinforced TiAl composites consisted of the fully lamellar TiAl matrix units that were reinforced by dispersed carbides and the outer reinforced network structures that were composed of TiB and Ti<sub>2</sub>AlC. The growth mechanisms of TiB and Ti<sub>2</sub>AlC in the outer network reinforced structures have been revealed. The orientation relationships were indicated as (0001)[11–20]<sub>Ti2AlC</sub>||(111)[10-1]<sub>TiAl</sub>, [011]<sub>TiB</sub>||[210]<sub>TiAl</sub> and [-100]<sub>TiB</sub>||[11–20]<sub>Ti2AlC</sub>. The introduction of dual-layers couple reinforced structures significantly enhanced the ultimate tensile strength (UTS) at 900 °C and the elongation at room temperature (RT). Especially, the composites with 0.5 wt% B<sub>4</sub>C addition represented the UTS and elongation as 424.36MPa/1.42 % at RT and 497.32MPa/4.12 % at 900 °C. The growths of outer network reinforced structures enhanced the connectivity of adjacent TiAl matrix units, and triggered off the transformation of fracture modes from intergranular to translamellar. Additionally, the plastic deformation of TiAl matrix composites mainly stemmed from γ phase and refined lamellae. The fractures usually propagated along the (101)<sub>TiB</sub> and (100)<sub>TiB</sub> planes in TiB crystals during the loading. Dislocations pile-ups led to the activation of slipping along the (0001)<sub>Ti2AlC</sub> in carbides, especially at high temperatures. The dual-layers couple reinforced structures resulted in the coordination of strengthening and toughening within TiAl matrix units and the interfaces, which contributed to the balance between the UTS at 900 °C and the elongation at RT of the composites.</div></div>\",\"PeriodicalId\":385,\"journal\":{\"name\":\"Materials Science and Engineering: A\",\"volume\":\"918 \",\"pages\":\"Article 147482\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921509324014138\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509324014138","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本研究结合等离子旋转电极工艺(PREP)和火花等离子烧结工艺(SPS),设计并成功制备了具有新型双层耦合增强结构的 TiAl 基复合材料。双层增强 TiAl 复合材料由分散碳化物增强的全片状 TiAl 基体单元和由 TiB 和 Ti2AlC 组成的外层增强网络结构组成。研究揭示了外层网络增强结构中 TiB 和 Ti2AlC 的生长机制。其取向关系为(0001)[11-20]Ti2AlC||(111)[10-1]TiAl、[011]TiB||[210]TiAl 和 [-100]TiB||[11-20]Ti2AlC 。双层耦合增强结构的引入显著提高了 900 °C 下的极限拉伸强度(UTS)和室温下的伸长率(RT)。特别是添加了 0.5 wt% B4C 的复合材料,其室温下的极限拉伸强度和伸长率分别为 424.36MPa/1.42%和 497.32MPa/4.12%。外层网状增强结构的生长增强了相邻 TiAl 基体单元的连通性,并引发了断裂模式从晶粒间断裂到易位断裂的转变。此外,TiAl 基复合材料的塑性变形主要源于 γ 相和细化薄片。在加载过程中,断裂通常沿着 TiB 晶体中的 (101)TiB 和 (100)TiB 平面传播。位错堆积导致碳化物中的(0001)Ti2AlC沿滑动方向活化,尤其是在高温下。双层耦合增强结构使 TiAl 基体单元和界面内的强化和韧化相互协调,从而使复合材料在 900 °C 时的 UTS 和 RT 时的伸长率达到平衡。
Design and investigation of strength-ductility TiAl matrix composites with a novel dual-layers couple reinforced structure
TiAl matrix composites with a novel dual-layers couple reinforced structure have been designed and successfully prepared by the combination of plasma rotating electrode process (PREP) and spark plasma sintering (SPS) in this study. The dual-layers reinforced TiAl composites consisted of the fully lamellar TiAl matrix units that were reinforced by dispersed carbides and the outer reinforced network structures that were composed of TiB and Ti2AlC. The growth mechanisms of TiB and Ti2AlC in the outer network reinforced structures have been revealed. The orientation relationships were indicated as (0001)[11–20]Ti2AlC||(111)[10-1]TiAl, [011]TiB||[210]TiAl and [-100]TiB||[11–20]Ti2AlC. The introduction of dual-layers couple reinforced structures significantly enhanced the ultimate tensile strength (UTS) at 900 °C and the elongation at room temperature (RT). Especially, the composites with 0.5 wt% B4C addition represented the UTS and elongation as 424.36MPa/1.42 % at RT and 497.32MPa/4.12 % at 900 °C. The growths of outer network reinforced structures enhanced the connectivity of adjacent TiAl matrix units, and triggered off the transformation of fracture modes from intergranular to translamellar. Additionally, the plastic deformation of TiAl matrix composites mainly stemmed from γ phase and refined lamellae. The fractures usually propagated along the (101)TiB and (100)TiB planes in TiB crystals during the loading. Dislocations pile-ups led to the activation of slipping along the (0001)Ti2AlC in carbides, especially at high temperatures. The dual-layers couple reinforced structures resulted in the coordination of strengthening and toughening within TiAl matrix units and the interfaces, which contributed to the balance between the UTS at 900 °C and the elongation at RT of the composites.
期刊介绍:
Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.