Mei Yin , Xinyu Tong , Yongjie Feng , Ziyao Zhang , Min Zhu , Qunnan Qiu , Yuqing Huang , Xinyue Hao , Zhuo Liu , Xiaolong Hu , Chengliang Gong
{"title":"镶嵌有 bFGF 的多面体微晶可促进伤口愈合","authors":"Mei Yin , Xinyu Tong , Yongjie Feng , Ziyao Zhang , Min Zhu , Qunnan Qiu , Yuqing Huang , Xinyue Hao , Zhuo Liu , Xiaolong Hu , Chengliang Gong","doi":"10.1016/j.ijbiomac.2024.136711","DOIUrl":null,"url":null,"abstract":"<div><div>Growth factors play a critical role in wound healing, and finding a suitable biosustained-release system has always been a research hotspot. <em>Bombyx mori cypovirus</em> (BmCPV) is an insect virus, which produces polyhedra that encapsulate progeny virions. In this study, we found that the viral structural protein VP7 encoded by the BmCPV genomic dsRNAs S7 segment can interact with polyhedrin (Polh) encoded by the BmCPV genomic dsRNAs S10 segment. We also confirmed that the amino acid sequence at position 331-360 (VP7-tag) of VP7 is needed to interact with Polh. We found that VP7-tag can be used as an immobilization signal to direct the incorporation of foreign proteins into polyhedra. Furthermore, we constructed polyhedra (bFGF-polyhedra) containing basic fibroblast growth factor (bFGF) using a baculovirus expression system co-expressing Polh and bFGF-VP7 (fusion of VP7-tag to C-terminus of bFGF). We found that bFGF-VP7 embedded into polyhedra was difficult to degrade in the natural environment, and bFGF-VP7 was continuously released from the polyhedra, enhancing cell proliferation and migration. The animal model was used to assess the effect of bFGF-polyhedra spray on the healing of full-thickness wounds. bFGF-polyhedra promoted the expression of TGF-β1, α-SMA, and PCNA, inhibited the expression of proinflammatory factors NF-κB and COX-2, promoted the proliferation and differentiation of fibroblasts, enhanced collagen production and epidermal regeneration, and improved wound healing. These results indicated that bFGF-polyhedra has a promising potential for accelerating wound healing.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"282 ","pages":"Article 136711"},"PeriodicalIF":8.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyhedrin microcrystals embedded with bFGF promote wound healing\",\"authors\":\"Mei Yin , Xinyu Tong , Yongjie Feng , Ziyao Zhang , Min Zhu , Qunnan Qiu , Yuqing Huang , Xinyue Hao , Zhuo Liu , Xiaolong Hu , Chengliang Gong\",\"doi\":\"10.1016/j.ijbiomac.2024.136711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Growth factors play a critical role in wound healing, and finding a suitable biosustained-release system has always been a research hotspot. <em>Bombyx mori cypovirus</em> (BmCPV) is an insect virus, which produces polyhedra that encapsulate progeny virions. In this study, we found that the viral structural protein VP7 encoded by the BmCPV genomic dsRNAs S7 segment can interact with polyhedrin (Polh) encoded by the BmCPV genomic dsRNAs S10 segment. We also confirmed that the amino acid sequence at position 331-360 (VP7-tag) of VP7 is needed to interact with Polh. We found that VP7-tag can be used as an immobilization signal to direct the incorporation of foreign proteins into polyhedra. Furthermore, we constructed polyhedra (bFGF-polyhedra) containing basic fibroblast growth factor (bFGF) using a baculovirus expression system co-expressing Polh and bFGF-VP7 (fusion of VP7-tag to C-terminus of bFGF). We found that bFGF-VP7 embedded into polyhedra was difficult to degrade in the natural environment, and bFGF-VP7 was continuously released from the polyhedra, enhancing cell proliferation and migration. The animal model was used to assess the effect of bFGF-polyhedra spray on the healing of full-thickness wounds. bFGF-polyhedra promoted the expression of TGF-β1, α-SMA, and PCNA, inhibited the expression of proinflammatory factors NF-κB and COX-2, promoted the proliferation and differentiation of fibroblasts, enhanced collagen production and epidermal regeneration, and improved wound healing. These results indicated that bFGF-polyhedra has a promising potential for accelerating wound healing.</div></div>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\"282 \",\"pages\":\"Article 136711\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141813024075202\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813024075202","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Polyhedrin microcrystals embedded with bFGF promote wound healing
Growth factors play a critical role in wound healing, and finding a suitable biosustained-release system has always been a research hotspot. Bombyx mori cypovirus (BmCPV) is an insect virus, which produces polyhedra that encapsulate progeny virions. In this study, we found that the viral structural protein VP7 encoded by the BmCPV genomic dsRNAs S7 segment can interact with polyhedrin (Polh) encoded by the BmCPV genomic dsRNAs S10 segment. We also confirmed that the amino acid sequence at position 331-360 (VP7-tag) of VP7 is needed to interact with Polh. We found that VP7-tag can be used as an immobilization signal to direct the incorporation of foreign proteins into polyhedra. Furthermore, we constructed polyhedra (bFGF-polyhedra) containing basic fibroblast growth factor (bFGF) using a baculovirus expression system co-expressing Polh and bFGF-VP7 (fusion of VP7-tag to C-terminus of bFGF). We found that bFGF-VP7 embedded into polyhedra was difficult to degrade in the natural environment, and bFGF-VP7 was continuously released from the polyhedra, enhancing cell proliferation and migration. The animal model was used to assess the effect of bFGF-polyhedra spray on the healing of full-thickness wounds. bFGF-polyhedra promoted the expression of TGF-β1, α-SMA, and PCNA, inhibited the expression of proinflammatory factors NF-κB and COX-2, promoted the proliferation and differentiation of fibroblasts, enhanced collagen production and epidermal regeneration, and improved wound healing. These results indicated that bFGF-polyhedra has a promising potential for accelerating wound healing.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.