Yanhua Chen , Xian Ding , Jun Zhou , Zhaoying Wang , Yunhai Bo , Ying Hu , Qingce Zang , Jing Xu , Ruiping Zhang , Jiuming He , Fen Yang , Zeper Abliz
{"title":"血浆代谢组学结合质谱成像揭示了胃癌发生和转移过程中肿瘤与血浆之间的相互影响","authors":"Yanhua Chen , Xian Ding , Jun Zhou , Zhaoying Wang , Yunhai Bo , Ying Hu , Qingce Zang , Jing Xu , Ruiping Zhang , Jiuming He , Fen Yang , Zeper Abliz","doi":"10.1016/j.cclet.2024.110351","DOIUrl":null,"url":null,"abstract":"<div><div>Gastric Carcinoma (GC) is a highly fatal malignant tumor with a poor prognosis. Its elevated mortality rates are primarily due to its proclivity for late-stage metastasis. Exploring the metabolic interactions between tumor microenvironment and the systemic bloodstream could help to clearly understand the mechanisms and identify precise biomarkers of tumor growth, proliferation, and metastasis. In this study, an integrative approach that combines plasma metabolomics with mass spectrometry imaging of tumor tissue was developed to investigate the global metabolic landscape of GC tumorigenesis and metastasis. The results showed that the oxidized glutathione to glutathione ratio (GSSH/GSH) became increased in non-distal metastatic GC (M0), which means an accumulation of oxidative stress in tumor tissues. Furthermore, it was found that the peroxidation of polyunsaturated fatty acids, such as 9,10-EpOMe, 9-HOTrE, <em>etc</em>., were accelerated in both plasma and tumor tissues of distal metastatic GC (M1). These changes were further confirmed the potential effect of CYP2E1 and GGT1 in metastatic potential of GC by mass spectrometry imaging (MSI) and immunohistochemistry (IHC). Collectively, our findings reveal the integrated multidimensional metabolomics approach is a clinical useful method to unravel the blood-tumor metabolic crosstalk, illuminate reprogrammed metabolic networks, and provide reliable circulating biomarkers.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 1","pages":"Article 110351"},"PeriodicalIF":9.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis\",\"authors\":\"Yanhua Chen , Xian Ding , Jun Zhou , Zhaoying Wang , Yunhai Bo , Ying Hu , Qingce Zang , Jing Xu , Ruiping Zhang , Jiuming He , Fen Yang , Zeper Abliz\",\"doi\":\"10.1016/j.cclet.2024.110351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gastric Carcinoma (GC) is a highly fatal malignant tumor with a poor prognosis. Its elevated mortality rates are primarily due to its proclivity for late-stage metastasis. Exploring the metabolic interactions between tumor microenvironment and the systemic bloodstream could help to clearly understand the mechanisms and identify precise biomarkers of tumor growth, proliferation, and metastasis. In this study, an integrative approach that combines plasma metabolomics with mass spectrometry imaging of tumor tissue was developed to investigate the global metabolic landscape of GC tumorigenesis and metastasis. The results showed that the oxidized glutathione to glutathione ratio (GSSH/GSH) became increased in non-distal metastatic GC (M0), which means an accumulation of oxidative stress in tumor tissues. Furthermore, it was found that the peroxidation of polyunsaturated fatty acids, such as 9,10-EpOMe, 9-HOTrE, <em>etc</em>., were accelerated in both plasma and tumor tissues of distal metastatic GC (M1). These changes were further confirmed the potential effect of CYP2E1 and GGT1 in metastatic potential of GC by mass spectrometry imaging (MSI) and immunohistochemistry (IHC). Collectively, our findings reveal the integrated multidimensional metabolomics approach is a clinical useful method to unravel the blood-tumor metabolic crosstalk, illuminate reprogrammed metabolic networks, and provide reliable circulating biomarkers.</div></div>\",\"PeriodicalId\":10088,\"journal\":{\"name\":\"Chinese Chemical Letters\",\"volume\":\"36 1\",\"pages\":\"Article 110351\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Chemical Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001841724008702\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724008702","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis
Gastric Carcinoma (GC) is a highly fatal malignant tumor with a poor prognosis. Its elevated mortality rates are primarily due to its proclivity for late-stage metastasis. Exploring the metabolic interactions between tumor microenvironment and the systemic bloodstream could help to clearly understand the mechanisms and identify precise biomarkers of tumor growth, proliferation, and metastasis. In this study, an integrative approach that combines plasma metabolomics with mass spectrometry imaging of tumor tissue was developed to investigate the global metabolic landscape of GC tumorigenesis and metastasis. The results showed that the oxidized glutathione to glutathione ratio (GSSH/GSH) became increased in non-distal metastatic GC (M0), which means an accumulation of oxidative stress in tumor tissues. Furthermore, it was found that the peroxidation of polyunsaturated fatty acids, such as 9,10-EpOMe, 9-HOTrE, etc., were accelerated in both plasma and tumor tissues of distal metastatic GC (M1). These changes were further confirmed the potential effect of CYP2E1 and GGT1 in metastatic potential of GC by mass spectrometry imaging (MSI) and immunohistochemistry (IHC). Collectively, our findings reveal the integrated multidimensional metabolomics approach is a clinical useful method to unravel the blood-tumor metabolic crosstalk, illuminate reprogrammed metabolic networks, and provide reliable circulating biomarkers.
期刊介绍:
Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.