Mohammed Asad Khan, Hrishikesh Gadgil, Sudarshan Kumar
{"title":"在资源匮乏地区加强长期呼吸道护理的新型气雾剂输送方法","authors":"Mohammed Asad Khan, Hrishikesh Gadgil, Sudarshan Kumar","doi":"10.1016/j.powtec.2024.120398","DOIUrl":null,"url":null,"abstract":"<div><div>Continuous aerosol therapy is safe, superior, and the mainstay in the therapy of patients with severe asthma, cystic fibrosis, chronic obstructive pulmonary disease (COPD), and coronavirus disease (COVID-19). However, continuous nebulization has been perceived as highly expensive and labor-intensive, which often requires specialized medical equipment. Moreover, it is difficult to maintain consistent aerosol output and particle size delivery over an extended period without operator intervention. This work proposes a simple and reliable continuous nebulization method using a conventional gas jet nebulizer and intravenous (IV) bottle/bag. The present work reports detailed experimental studies on a gas jet nebulizer with Particle image velocimetry (PIV), Particle/droplet Imaging Analysis (PDIA), and Mie scattering techniques to demonstrate the feasibility of the proposed technique. The preliminary investigation shows that the proposed method provides continuous liquid output delivery without external supervision. The liquid delivery rate and mass median diameter (MMD) of the nebulizer mainly depend on the gas flow rate and suction height. The MMD of the primary generated droplets is reported to vary between 100 and 230 μm for a ± 10 cm suction height and 500–1000 mlph nebulization gas flow rate. Most importantly, the nebulizer spray angle, stability, droplet size distribution, and the axial and radial velocities of the droplets are marginally affected by the suction height. Therefore, the proposed system is a versatile, safe, and cost-effective method of continuous nebulization therapy, especially in resource-poor countries or contagious disease outbreak situations.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120398"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new aerosol delivery approach for enhanced long-term respiratory care in resource-poor settings\",\"authors\":\"Mohammed Asad Khan, Hrishikesh Gadgil, Sudarshan Kumar\",\"doi\":\"10.1016/j.powtec.2024.120398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Continuous aerosol therapy is safe, superior, and the mainstay in the therapy of patients with severe asthma, cystic fibrosis, chronic obstructive pulmonary disease (COPD), and coronavirus disease (COVID-19). However, continuous nebulization has been perceived as highly expensive and labor-intensive, which often requires specialized medical equipment. Moreover, it is difficult to maintain consistent aerosol output and particle size delivery over an extended period without operator intervention. This work proposes a simple and reliable continuous nebulization method using a conventional gas jet nebulizer and intravenous (IV) bottle/bag. The present work reports detailed experimental studies on a gas jet nebulizer with Particle image velocimetry (PIV), Particle/droplet Imaging Analysis (PDIA), and Mie scattering techniques to demonstrate the feasibility of the proposed technique. The preliminary investigation shows that the proposed method provides continuous liquid output delivery without external supervision. The liquid delivery rate and mass median diameter (MMD) of the nebulizer mainly depend on the gas flow rate and suction height. The MMD of the primary generated droplets is reported to vary between 100 and 230 μm for a ± 10 cm suction height and 500–1000 mlph nebulization gas flow rate. Most importantly, the nebulizer spray angle, stability, droplet size distribution, and the axial and radial velocities of the droplets are marginally affected by the suction height. Therefore, the proposed system is a versatile, safe, and cost-effective method of continuous nebulization therapy, especially in resource-poor countries or contagious disease outbreak situations.</div></div>\",\"PeriodicalId\":407,\"journal\":{\"name\":\"Powder Technology\",\"volume\":\"449 \",\"pages\":\"Article 120398\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032591024010428\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010428","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
A new aerosol delivery approach for enhanced long-term respiratory care in resource-poor settings
Continuous aerosol therapy is safe, superior, and the mainstay in the therapy of patients with severe asthma, cystic fibrosis, chronic obstructive pulmonary disease (COPD), and coronavirus disease (COVID-19). However, continuous nebulization has been perceived as highly expensive and labor-intensive, which often requires specialized medical equipment. Moreover, it is difficult to maintain consistent aerosol output and particle size delivery over an extended period without operator intervention. This work proposes a simple and reliable continuous nebulization method using a conventional gas jet nebulizer and intravenous (IV) bottle/bag. The present work reports detailed experimental studies on a gas jet nebulizer with Particle image velocimetry (PIV), Particle/droplet Imaging Analysis (PDIA), and Mie scattering techniques to demonstrate the feasibility of the proposed technique. The preliminary investigation shows that the proposed method provides continuous liquid output delivery without external supervision. The liquid delivery rate and mass median diameter (MMD) of the nebulizer mainly depend on the gas flow rate and suction height. The MMD of the primary generated droplets is reported to vary between 100 and 230 μm for a ± 10 cm suction height and 500–1000 mlph nebulization gas flow rate. Most importantly, the nebulizer spray angle, stability, droplet size distribution, and the axial and radial velocities of the droplets are marginally affected by the suction height. Therefore, the proposed system is a versatile, safe, and cost-effective method of continuous nebulization therapy, especially in resource-poor countries or contagious disease outbreak situations.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.