Qiang Li , Maofang Gao , Sibo Duan , Guijun Yang , Zhao-Liang Li
{"title":"将遥感同化与 SCE-UA 相结合,构建逐格空间化作物模型,可显著提高冬小麦产量估算的准确性","authors":"Qiang Li , Maofang Gao , Sibo Duan , Guijun Yang , Zhao-Liang Li","doi":"10.1016/j.compag.2024.109594","DOIUrl":null,"url":null,"abstract":"<div><div>Grain yield estimation remains a focal point in agricultural research. It’s well known that crop models have very high accuracy in field application, but their scalability to a regional level encounters formidable constraints attributed to stringent input parameter demands, challenges in data acquisition, and complexities in parameter calibration. In a concerted effort to overcome these aforementioned challenges, this study endevours to formulate a spatialized crop growth model, organized grid by grid, propelled by a myriad of data sources encompassing diverse remote sensing and statistical inputs. Our approach involves the integration of a machine learning technique—the shuffled complex evolution algorithm (SCE-UA) to propose an automatic parameter optimization method for model calibration, alongside two remote sensing assimilation methods: a four-dimensional variational assimilation algorithm (4Dvar) and ensemble Kalman filter (Enkf) to optimising model trajectories to improve crop yield estimation accuracy. This innovative methodology addresses the intricacies associated with regional-scale simulation and bridges the gap between the inherent limitations of conventional crop models and the demand for high-precision yield estimations. The results show that: (1) we improved the accuracy of the regional crop model from 0.53 to 0.94 for the coefficient of determination (R<sup>2</sup>) and from 824.82 kg/ha to 148.48 kg/ha for root mean square error (RMSE), which greatly improved the accuracy of winter wheat yield estimation; (2) after comparing different optimization and assimilation strategies, the simulation strategy of complex shuffling algorithm (SCE-UA) combined with the four-dimensional variational algorithm (4Dvar) can enable the grid-by-grid model to estimate yield to achieve the highest simulation accuracy, with R<sup>2</sup> of 0.94 and RMSE of 148.48 kg/ha; (3) we evaluated the simulation effectiveness of the algorithm and discuss the shortcomings and uncertainties of the grid-by-grid model. This study has important practical implications for the development of spatialized models for estimating winter wheat yields and bolstering our capacity for informed decision-making in the realm of food production and agricultural management.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating remote sensing assimilation and SCE-UA to construct a grid-by-grid spatialized crop model can dramatically improve winter wheat yield estimate accuracy\",\"authors\":\"Qiang Li , Maofang Gao , Sibo Duan , Guijun Yang , Zhao-Liang Li\",\"doi\":\"10.1016/j.compag.2024.109594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Grain yield estimation remains a focal point in agricultural research. It’s well known that crop models have very high accuracy in field application, but their scalability to a regional level encounters formidable constraints attributed to stringent input parameter demands, challenges in data acquisition, and complexities in parameter calibration. In a concerted effort to overcome these aforementioned challenges, this study endevours to formulate a spatialized crop growth model, organized grid by grid, propelled by a myriad of data sources encompassing diverse remote sensing and statistical inputs. Our approach involves the integration of a machine learning technique—the shuffled complex evolution algorithm (SCE-UA) to propose an automatic parameter optimization method for model calibration, alongside two remote sensing assimilation methods: a four-dimensional variational assimilation algorithm (4Dvar) and ensemble Kalman filter (Enkf) to optimising model trajectories to improve crop yield estimation accuracy. This innovative methodology addresses the intricacies associated with regional-scale simulation and bridges the gap between the inherent limitations of conventional crop models and the demand for high-precision yield estimations. The results show that: (1) we improved the accuracy of the regional crop model from 0.53 to 0.94 for the coefficient of determination (R<sup>2</sup>) and from 824.82 kg/ha to 148.48 kg/ha for root mean square error (RMSE), which greatly improved the accuracy of winter wheat yield estimation; (2) after comparing different optimization and assimilation strategies, the simulation strategy of complex shuffling algorithm (SCE-UA) combined with the four-dimensional variational algorithm (4Dvar) can enable the grid-by-grid model to estimate yield to achieve the highest simulation accuracy, with R<sup>2</sup> of 0.94 and RMSE of 148.48 kg/ha; (3) we evaluated the simulation effectiveness of the algorithm and discuss the shortcomings and uncertainties of the grid-by-grid model. This study has important practical implications for the development of spatialized models for estimating winter wheat yields and bolstering our capacity for informed decision-making in the realm of food production and agricultural management.</div></div>\",\"PeriodicalId\":50627,\"journal\":{\"name\":\"Computers and Electronics in Agriculture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Electronics in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168169924009852\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924009852","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Integrating remote sensing assimilation and SCE-UA to construct a grid-by-grid spatialized crop model can dramatically improve winter wheat yield estimate accuracy
Grain yield estimation remains a focal point in agricultural research. It’s well known that crop models have very high accuracy in field application, but their scalability to a regional level encounters formidable constraints attributed to stringent input parameter demands, challenges in data acquisition, and complexities in parameter calibration. In a concerted effort to overcome these aforementioned challenges, this study endevours to formulate a spatialized crop growth model, organized grid by grid, propelled by a myriad of data sources encompassing diverse remote sensing and statistical inputs. Our approach involves the integration of a machine learning technique—the shuffled complex evolution algorithm (SCE-UA) to propose an automatic parameter optimization method for model calibration, alongside two remote sensing assimilation methods: a four-dimensional variational assimilation algorithm (4Dvar) and ensemble Kalman filter (Enkf) to optimising model trajectories to improve crop yield estimation accuracy. This innovative methodology addresses the intricacies associated with regional-scale simulation and bridges the gap between the inherent limitations of conventional crop models and the demand for high-precision yield estimations. The results show that: (1) we improved the accuracy of the regional crop model from 0.53 to 0.94 for the coefficient of determination (R2) and from 824.82 kg/ha to 148.48 kg/ha for root mean square error (RMSE), which greatly improved the accuracy of winter wheat yield estimation; (2) after comparing different optimization and assimilation strategies, the simulation strategy of complex shuffling algorithm (SCE-UA) combined with the four-dimensional variational algorithm (4Dvar) can enable the grid-by-grid model to estimate yield to achieve the highest simulation accuracy, with R2 of 0.94 and RMSE of 148.48 kg/ha; (3) we evaluated the simulation effectiveness of the algorithm and discuss the shortcomings and uncertainties of the grid-by-grid model. This study has important practical implications for the development of spatialized models for estimating winter wheat yields and bolstering our capacity for informed decision-making in the realm of food production and agricultural management.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.