{"title":"带阻抗边界条件的声学障碍物散射极点的精确计算","authors":"","doi":"10.1016/j.wavemoti.2024.103425","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a computation method for scattering poles of impedance obstacles. Boundary integral equations are used to formulate the problem. It is shown that the scattering poles are the eigenvalues of some integral operator. Then we employ the Nyström method to discretize the integral operator and obtain a nonlinear matrix eigenvalue problem. The eigenvalues are computed using a multistep parallel spectral indicator method. Numerical examples demonstrate the high accuracy of the proposed method and can serve as the benchmarks. Our study provides a practical approach and can be extended to other scattering problems. This paper continues our previous study on the computation method for scattering poles of sound-soft obstacles.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate computation of scattering poles of acoustic obstacles with impedance boundary conditions\",\"authors\":\"\",\"doi\":\"10.1016/j.wavemoti.2024.103425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a computation method for scattering poles of impedance obstacles. Boundary integral equations are used to formulate the problem. It is shown that the scattering poles are the eigenvalues of some integral operator. Then we employ the Nyström method to discretize the integral operator and obtain a nonlinear matrix eigenvalue problem. The eigenvalues are computed using a multistep parallel spectral indicator method. Numerical examples demonstrate the high accuracy of the proposed method and can serve as the benchmarks. Our study provides a practical approach and can be extended to other scattering problems. This paper continues our previous study on the computation method for scattering poles of sound-soft obstacles.</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524001550\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001550","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Accurate computation of scattering poles of acoustic obstacles with impedance boundary conditions
We propose a computation method for scattering poles of impedance obstacles. Boundary integral equations are used to formulate the problem. It is shown that the scattering poles are the eigenvalues of some integral operator. Then we employ the Nyström method to discretize the integral operator and obtain a nonlinear matrix eigenvalue problem. The eigenvalues are computed using a multistep parallel spectral indicator method. Numerical examples demonstrate the high accuracy of the proposed method and can serve as the benchmarks. Our study provides a practical approach and can be extended to other scattering problems. This paper continues our previous study on the computation method for scattering poles of sound-soft obstacles.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.