论流体力学的非线性随机分数微分方程

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Marc Jornet , Juan J. Nieto
{"title":"论流体力学的非线性随机分数微分方程","authors":"Marc Jornet ,&nbsp;Juan J. Nieto","doi":"10.1016/j.physd.2024.134400","DOIUrl":null,"url":null,"abstract":"<div><div>We deal with a nonlinear stochastic fractional differential equation, in the Caputo and Itô senses, that generalizes important models of fluid dynamics, such as the Bagley–Torvik and the Basset equations. We investigate the integral formulation, existence, uniqueness, moment bounds, and continuity with respect to input data. Some conjectures are raised.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a nonlinear stochastic fractional differential equation of fluid dynamics\",\"authors\":\"Marc Jornet ,&nbsp;Juan J. Nieto\",\"doi\":\"10.1016/j.physd.2024.134400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We deal with a nonlinear stochastic fractional differential equation, in the Caputo and Itô senses, that generalizes important models of fluid dynamics, such as the Bagley–Torvik and the Basset equations. We investigate the integral formulation, existence, uniqueness, moment bounds, and continuity with respect to input data. Some conjectures are raised.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924003506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是 Caputo 和 Itô 意义上的非线性随机分数微分方程,它概括了重要的流体动力学模型,如 Bagley-Torvik 和 Basset 方程。我们研究了积分公式、存在性、唯一性、矩界以及与输入数据相关的连续性。我们还提出了一些猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a nonlinear stochastic fractional differential equation of fluid dynamics
We deal with a nonlinear stochastic fractional differential equation, in the Caputo and Itô senses, that generalizes important models of fluid dynamics, such as the Bagley–Torvik and the Basset equations. We investigate the integral formulation, existence, uniqueness, moment bounds, and continuity with respect to input data. Some conjectures are raised.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信