论二阶次椭圆算子的平坦性传播

IF 2.4 2区 数学 Q1 MATHEMATICS
{"title":"论二阶次椭圆算子的平坦性传播","authors":"","doi":"10.1016/j.jde.2024.10.034","DOIUrl":null,"url":null,"abstract":"<div><div>For a class of hypoelliptic operators with real-analytic coefficients, we provide a criterion ensuring a partial analyticity result. As a consequence, even when the “elliptic” strong unique continuation (i.e. a solution of the homogeneous equation which vanishes of infinite order at a point is zero near such a point) fails, a weaker form of “propagation” of zeroes still holds.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the propagation of flatness for second order hypoelliptic operators\",\"authors\":\"\",\"doi\":\"10.1016/j.jde.2024.10.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a class of hypoelliptic operators with real-analytic coefficients, we provide a criterion ensuring a partial analyticity result. As a consequence, even when the “elliptic” strong unique continuation (i.e. a solution of the homogeneous equation which vanishes of infinite order at a point is zero near such a point) fails, a weaker form of “propagation” of zeroes still holds.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006909\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006909","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于一类具有实解析系数的次椭圆算子,我们提供了一个确保部分解析性结果的准则。因此,即使 "椭圆 "强唯一延续(即在某一点上无穷阶消失的同次方程解在该点附近为零)失效,零点 "传播 "的较弱形式仍然成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the propagation of flatness for second order hypoelliptic operators
For a class of hypoelliptic operators with real-analytic coefficients, we provide a criterion ensuring a partial analyticity result. As a consequence, even when the “elliptic” strong unique continuation (i.e. a solution of the homogeneous equation which vanishes of infinite order at a point is zero near such a point) fails, a weaker form of “propagation” of zeroes still holds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信