{"title":"一般增长条件下的勒雷-狮子存在定理","authors":"","doi":"10.1016/j.jde.2024.10.025","DOIUrl":null,"url":null,"abstract":"<div><div>We prove an existence (and regularity) result of weak solutions <span><math><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>∩</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mi>loc</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></math></span>, to a Dirichlet problem for a second order elliptic equation in divergence form, under general and <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>−</mo></math></span><em>growth conditions</em> of the differential operator. This is a first attempt to extend to general growth the well known Leray-Lions existence theorem, which holds under the so-called natural growth conditions with <span><math><mi>q</mi><mo>=</mo><mi>p</mi></math></span>. We found a way to treat the general context with explicit dependence on <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span>, other than on the gradient variable <span><math><mi>ξ</mi><mo>=</mo><mi>D</mi><mi>u</mi></math></span>; these aspects require particular attention due to the <span><math><mi>p</mi><mo>,</mo><mi>q</mi></math></span>-context, with some differences and new difficulties compared to the standard case <span><math><mi>p</mi><mo>=</mo><mi>q</mi></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Leray-Lions existence theorem under general growth conditions\",\"authors\":\"\",\"doi\":\"10.1016/j.jde.2024.10.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove an existence (and regularity) result of weak solutions <span><math><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>∩</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mi>loc</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></math></span>, to a Dirichlet problem for a second order elliptic equation in divergence form, under general and <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>−</mo></math></span><em>growth conditions</em> of the differential operator. This is a first attempt to extend to general growth the well known Leray-Lions existence theorem, which holds under the so-called natural growth conditions with <span><math><mi>q</mi><mo>=</mo><mi>p</mi></math></span>. We found a way to treat the general context with explicit dependence on <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span>, other than on the gradient variable <span><math><mi>ξ</mi><mo>=</mo><mi>D</mi><mi>u</mi></math></span>; these aspects require particular attention due to the <span><math><mi>p</mi><mo>,</mo><mi>q</mi></math></span>-context, with some differences and new difficulties compared to the standard case <span><math><mi>p</mi><mo>=</mo><mi>q</mi></math></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002203962400682X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962400682X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Leray-Lions existence theorem under general growth conditions
We prove an existence (and regularity) result of weak solutions , to a Dirichlet problem for a second order elliptic equation in divergence form, under general and growth conditions of the differential operator. This is a first attempt to extend to general growth the well known Leray-Lions existence theorem, which holds under the so-called natural growth conditions with . We found a way to treat the general context with explicit dependence on , other than on the gradient variable ; these aspects require particular attention due to the -context, with some differences and new difficulties compared to the standard case .
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics