Baolin Wang , Xuejing Shi , Cheng Zhou , Binyu Li , Xuan Liu , Xinwei Li , Jipeng Huang , Lijun Song
{"title":"基于象限探测器平行测量的三维单像素成像技术","authors":"Baolin Wang , Xuejing Shi , Cheng Zhou , Binyu Li , Xuan Liu , Xinwei Li , Jipeng Huang , Lijun Song","doi":"10.1016/j.optlaseng.2024.108671","DOIUrl":null,"url":null,"abstract":"<div><div>Structured light three-dimensional (3D) imaging has advantages such as high accuracy, high resolution, and non-contact, and has enormous application value in fields such as automotive manufacturing and cultural relic detection. However, it often requires multiple structured light encoding to obtain 3D information, thus limiting the speed of 3D imaging. Single pixel imaging (SPI) technology, due to its use of structured light and single point detection to jointly obtain image information, can simply achieve simultaneous detection of multi-dimensional information through a single pixel detector array. Therefore, the structured light 3D imaging technology is combined with the single-pixel technology of multi-channel quadrant sensing, and the modulation of three structured light fields of red, green, and blue light is achieved separately through the decoupling of spatial 3D information and spectral dimension information. Combined with a quadrant sensing detector integrated with red, green, and blue filtering, simultaneous measurement of three structured light field signals is achieved. Thus, a scheme demonstration is accomplished to improve the imaging speed of 3D imaging by three times through decoupling. Further combining Gray codes and optimizing Hadamard sequences using compressive sensing ensures the accuracy and imaging quality under undersampling of 3D imaging. The experimental results show that the RMSE of our method is only 0.0576 mm. This method can be further extended to achieve high-precision and high-quality 3D reconstruction using more channel structured light modulation and more spectral detector arrays in only one parallel measurement.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108671"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D single pixel imaging based on parallel measurement with quadrant detector\",\"authors\":\"Baolin Wang , Xuejing Shi , Cheng Zhou , Binyu Li , Xuan Liu , Xinwei Li , Jipeng Huang , Lijun Song\",\"doi\":\"10.1016/j.optlaseng.2024.108671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Structured light three-dimensional (3D) imaging has advantages such as high accuracy, high resolution, and non-contact, and has enormous application value in fields such as automotive manufacturing and cultural relic detection. However, it often requires multiple structured light encoding to obtain 3D information, thus limiting the speed of 3D imaging. Single pixel imaging (SPI) technology, due to its use of structured light and single point detection to jointly obtain image information, can simply achieve simultaneous detection of multi-dimensional information through a single pixel detector array. Therefore, the structured light 3D imaging technology is combined with the single-pixel technology of multi-channel quadrant sensing, and the modulation of three structured light fields of red, green, and blue light is achieved separately through the decoupling of spatial 3D information and spectral dimension information. Combined with a quadrant sensing detector integrated with red, green, and blue filtering, simultaneous measurement of three structured light field signals is achieved. Thus, a scheme demonstration is accomplished to improve the imaging speed of 3D imaging by three times through decoupling. Further combining Gray codes and optimizing Hadamard sequences using compressive sensing ensures the accuracy and imaging quality under undersampling of 3D imaging. The experimental results show that the RMSE of our method is only 0.0576 mm. This method can be further extended to achieve high-precision and high-quality 3D reconstruction using more channel structured light modulation and more spectral detector arrays in only one parallel measurement.</div></div>\",\"PeriodicalId\":49719,\"journal\":{\"name\":\"Optics and Lasers in Engineering\",\"volume\":\"184 \",\"pages\":\"Article 108671\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143816624006493\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624006493","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
3D single pixel imaging based on parallel measurement with quadrant detector
Structured light three-dimensional (3D) imaging has advantages such as high accuracy, high resolution, and non-contact, and has enormous application value in fields such as automotive manufacturing and cultural relic detection. However, it often requires multiple structured light encoding to obtain 3D information, thus limiting the speed of 3D imaging. Single pixel imaging (SPI) technology, due to its use of structured light and single point detection to jointly obtain image information, can simply achieve simultaneous detection of multi-dimensional information through a single pixel detector array. Therefore, the structured light 3D imaging technology is combined with the single-pixel technology of multi-channel quadrant sensing, and the modulation of three structured light fields of red, green, and blue light is achieved separately through the decoupling of spatial 3D information and spectral dimension information. Combined with a quadrant sensing detector integrated with red, green, and blue filtering, simultaneous measurement of three structured light field signals is achieved. Thus, a scheme demonstration is accomplished to improve the imaging speed of 3D imaging by three times through decoupling. Further combining Gray codes and optimizing Hadamard sequences using compressive sensing ensures the accuracy and imaging quality under undersampling of 3D imaging. The experimental results show that the RMSE of our method is only 0.0576 mm. This method can be further extended to achieve high-precision and high-quality 3D reconstruction using more channel structured light modulation and more spectral detector arrays in only one parallel measurement.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques