扁平相对米塔格-列夫勒模块和扎里斯基位置

IF 0.7 2区 数学 Q2 MATHEMATICS
Asmae Ben Yassine, Jan Trlifaj
{"title":"扁平相对米塔格-列夫勒模块和扎里斯基位置","authors":"Asmae Ben Yassine,&nbsp;Jan Trlifaj","doi":"10.1016/j.jpaa.2024.107834","DOIUrl":null,"url":null,"abstract":"<div><div>The ascent and descent of the Mittag-Leffler property were instrumental in proving Zariski locality of the notion of an (infinite dimensional) vector bundle by Raynaud and Gruson in <span><span>[26]</span></span>. More recently, relative Mittag-Leffler modules were employed in the theory of (infinitely generated) tilting modules and the associated quasi-coherent sheaves, <span><span>[2]</span></span>, <span><span>[22]</span></span>. Here, we study the ascent and descent along flat and faithfully flat homomorphisms for relative versions of the Mittag-Leffler property. In particular, we prove the Zariski locality of the notion of a locally f-projective quasi-coherent sheaf for all schemes, and for each <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, of the notion of an <em>n</em>-Drinfeld vector bundle for all locally noetherian schemes.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flat relative Mittag-Leffler modules and Zariski locality\",\"authors\":\"Asmae Ben Yassine,&nbsp;Jan Trlifaj\",\"doi\":\"10.1016/j.jpaa.2024.107834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ascent and descent of the Mittag-Leffler property were instrumental in proving Zariski locality of the notion of an (infinite dimensional) vector bundle by Raynaud and Gruson in <span><span>[26]</span></span>. More recently, relative Mittag-Leffler modules were employed in the theory of (infinitely generated) tilting modules and the associated quasi-coherent sheaves, <span><span>[2]</span></span>, <span><span>[22]</span></span>. Here, we study the ascent and descent along flat and faithfully flat homomorphisms for relative versions of the Mittag-Leffler property. In particular, we prove the Zariski locality of the notion of a locally f-projective quasi-coherent sheaf for all schemes, and for each <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, of the notion of an <em>n</em>-Drinfeld vector bundle for all locally noetherian schemes.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924002317\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002317","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

雷诺和格鲁森在[26]中证明(无限维)向量束概念的扎里斯基位置性时,米塔格-勒弗勒性质的上升和下降起了重要作用。最近,[2]、[22] 在(无限生成的)倾斜模块和相关准相干剪切理论中使用了相对米塔格-勒弗勒模块。在这里,我们研究了米塔格-勒弗勒性质相对版本的沿平坦和忠实平坦同态的上升和下降。特别是,我们证明了所有方案的局部 f投影准相干剪切概念的扎里斯基局域性,以及所有局部无醚方案的 n-Drinfeld 向量束概念的每个 n≥1 的扎里斯基局域性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flat relative Mittag-Leffler modules and Zariski locality
The ascent and descent of the Mittag-Leffler property were instrumental in proving Zariski locality of the notion of an (infinite dimensional) vector bundle by Raynaud and Gruson in [26]. More recently, relative Mittag-Leffler modules were employed in the theory of (infinitely generated) tilting modules and the associated quasi-coherent sheaves, [2], [22]. Here, we study the ascent and descent along flat and faithfully flat homomorphisms for relative versions of the Mittag-Leffler property. In particular, we prove the Zariski locality of the notion of a locally f-projective quasi-coherent sheaf for all schemes, and for each n1, of the notion of an n-Drinfeld vector bundle for all locally noetherian schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信