双曲型仿射 Gm 曲面的特征

IF 0.7 2区 数学 Q2 MATHEMATICS
Andriy Regeta
{"title":"双曲型仿射 Gm 曲面的特征","authors":"Andriy Regeta","doi":"10.1016/j.jpaa.2024.107829","DOIUrl":null,"url":null,"abstract":"<div><div>In this note we extend the result from <span><span>[14]</span></span> and prove that if <em>S</em> is an affine non-toric <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>-surface of hyperbolic type that admits a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>-action and <em>X</em> is an affine irreducible variety such that <span><math><mi>Aut</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is isomorphic to <span><math><mi>Aut</mi><mo>(</mo><mi>S</mi><mo>)</mo></math></span> as an abstract group, then <em>X</em> is a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>-surface of hyperbolic type. Further, we show that a smooth Danielewski surface <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mo>{</mo><mi>x</mi><mi>y</mi><mo>=</mo><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>}</mo><mo>⊂</mo><msup><mrow><mi>A</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, where <em>p</em> has no multiple roots, is determined by its automorphism group seen as an ind-group in the category of affine irreducible varieties.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of affine Gm-surfaces of hyperbolic type\",\"authors\":\"Andriy Regeta\",\"doi\":\"10.1016/j.jpaa.2024.107829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this note we extend the result from <span><span>[14]</span></span> and prove that if <em>S</em> is an affine non-toric <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>-surface of hyperbolic type that admits a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>-action and <em>X</em> is an affine irreducible variety such that <span><math><mi>Aut</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is isomorphic to <span><math><mi>Aut</mi><mo>(</mo><mi>S</mi><mo>)</mo></math></span> as an abstract group, then <em>X</em> is a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>-surface of hyperbolic type. Further, we show that a smooth Danielewski surface <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mo>{</mo><mi>x</mi><mi>y</mi><mo>=</mo><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>}</mo><mo>⊂</mo><msup><mrow><mi>A</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, where <em>p</em> has no multiple roots, is determined by its automorphism group seen as an ind-group in the category of affine irreducible varieties.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924002263\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002263","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本注释中,我们扩展了 [14] 的结果,证明如果 S 是双曲型的仿射非簇状 Gm 曲面,且允许 Ga 作用,而 X 是仿射不可还原变种,使得 Aut(X) 与作为抽象群的 Aut(S) 同构,则 X 是双曲型的 Gm 曲面。此外,我们还证明了光滑的丹尼列夫斯基曲面 Dp={xy=p(z)}⊂A3(其中 p 没有多根)是由它的自形群决定的,这个自形群被视为仿射不可还原变种范畴中的一个内群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of affine Gm-surfaces of hyperbolic type
In this note we extend the result from [14] and prove that if S is an affine non-toric Gm-surface of hyperbolic type that admits a Ga-action and X is an affine irreducible variety such that Aut(X) is isomorphic to Aut(S) as an abstract group, then X is a Gm-surface of hyperbolic type. Further, we show that a smooth Danielewski surface Dp={xy=p(z)}A3, where p has no multiple roots, is determined by its automorphism group seen as an ind-group in the category of affine irreducible varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信