{"title":"拓扑自相似集合是自相似集合的充分条件","authors":"Tianjia Ni , Zhiying Wen","doi":"10.1016/j.topol.2024.109115","DOIUrl":null,"url":null,"abstract":"<div><div>A self-similar set always possesses a self-similar topological structure coded by the shift space (symbolic space), which is considered as the coordinate system for this set. On the contrary, it is known that given a compact set <em>K</em> with self-similar topological structure, there may not exist a metric <em>d</em> such that <span><math><mo>(</mo><mi>K</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span> is a self-similar set with the same topological structure. We provide an easy-to-use sufficient condition for the existence of such metric <em>d</em> in terms of the associated graph with respect to the self-similar topological structure. Therefore, one can easily construct a required self-similar set from the shift space by specifying the topological structure.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"358 ","pages":"Article 109115"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sufficient condition for a topological self-similar set to be a self-similar set\",\"authors\":\"Tianjia Ni , Zhiying Wen\",\"doi\":\"10.1016/j.topol.2024.109115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A self-similar set always possesses a self-similar topological structure coded by the shift space (symbolic space), which is considered as the coordinate system for this set. On the contrary, it is known that given a compact set <em>K</em> with self-similar topological structure, there may not exist a metric <em>d</em> such that <span><math><mo>(</mo><mi>K</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span> is a self-similar set with the same topological structure. We provide an easy-to-use sufficient condition for the existence of such metric <em>d</em> in terms of the associated graph with respect to the self-similar topological structure. Therefore, one can easily construct a required self-similar set from the shift space by specifying the topological structure.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"358 \",\"pages\":\"Article 109115\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864124003006\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124003006","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Sufficient condition for a topological self-similar set to be a self-similar set
A self-similar set always possesses a self-similar topological structure coded by the shift space (symbolic space), which is considered as the coordinate system for this set. On the contrary, it is known that given a compact set K with self-similar topological structure, there may not exist a metric d such that is a self-similar set with the same topological structure. We provide an easy-to-use sufficient condition for the existence of such metric d in terms of the associated graph with respect to the self-similar topological structure. Therefore, one can easily construct a required self-similar set from the shift space by specifying the topological structure.
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.