Paulo V.R.M. Silva , Robert B. James , Kathryn L. Russell , Tim D. Fletcher , Maria F.S. Gisi , Oldrich Navratil , Frederic Cherqui , Etienne Cossart
{"title":"低成本悬浮沉积物和水位自动监测站","authors":"Paulo V.R.M. Silva , Robert B. James , Kathryn L. Russell , Tim D. Fletcher , Maria F.S. Gisi , Oldrich Navratil , Frederic Cherqui , Etienne Cossart","doi":"10.1016/j.ohx.2024.e00594","DOIUrl":null,"url":null,"abstract":"<div><div>The use of low-cost sensors, with open-source code, facilitates greater spatial resolution and flexibility of environmental monitoring, thus generating more information and overcoming limitations of traditional commercial sensors. Measurement of water turbidity using submerged sensors can be problematic in that rapid biofouling requires frequent site visits to remove, clean, calibrate and replace the sensor. We therefore designed an automated system using low-cost commercially-available sensors that pumps water from the stream, samples it for turbidity and purges remaining water, leaving the turbidity sensor dry between measurements, thus greatly reducing the biofouling problem and minimizing operation costs. Our station was able to estimate suspended sediment concentrations between 0 and 6 g/L with a root mean square error (RMSE) around 5 % of the total range, which meets typical research and operational study requirements. The results showed that the monitoring station is capable of monitoring water level and turbidity for long periods without the need of cleaning the turbidity sensor, due to its purge function. We demonstrated that spatially intense measurement of turbidity within catchments and drainage networks can be achieved at a relatively low cost, which allows a better understanding of the main sources of suspended sediments and their spatial and temporal variability.</div></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"20 ","pages":"Article e00594"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An automated low-cost monitoring station for suspended sediments and water level\",\"authors\":\"Paulo V.R.M. Silva , Robert B. James , Kathryn L. Russell , Tim D. Fletcher , Maria F.S. Gisi , Oldrich Navratil , Frederic Cherqui , Etienne Cossart\",\"doi\":\"10.1016/j.ohx.2024.e00594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The use of low-cost sensors, with open-source code, facilitates greater spatial resolution and flexibility of environmental monitoring, thus generating more information and overcoming limitations of traditional commercial sensors. Measurement of water turbidity using submerged sensors can be problematic in that rapid biofouling requires frequent site visits to remove, clean, calibrate and replace the sensor. We therefore designed an automated system using low-cost commercially-available sensors that pumps water from the stream, samples it for turbidity and purges remaining water, leaving the turbidity sensor dry between measurements, thus greatly reducing the biofouling problem and minimizing operation costs. Our station was able to estimate suspended sediment concentrations between 0 and 6 g/L with a root mean square error (RMSE) around 5 % of the total range, which meets typical research and operational study requirements. The results showed that the monitoring station is capable of monitoring water level and turbidity for long periods without the need of cleaning the turbidity sensor, due to its purge function. We demonstrated that spatially intense measurement of turbidity within catchments and drainage networks can be achieved at a relatively low cost, which allows a better understanding of the main sources of suspended sediments and their spatial and temporal variability.</div></div>\",\"PeriodicalId\":37503,\"journal\":{\"name\":\"HardwareX\",\"volume\":\"20 \",\"pages\":\"Article e00594\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HardwareX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468067224000889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An automated low-cost monitoring station for suspended sediments and water level
The use of low-cost sensors, with open-source code, facilitates greater spatial resolution and flexibility of environmental monitoring, thus generating more information and overcoming limitations of traditional commercial sensors. Measurement of water turbidity using submerged sensors can be problematic in that rapid biofouling requires frequent site visits to remove, clean, calibrate and replace the sensor. We therefore designed an automated system using low-cost commercially-available sensors that pumps water from the stream, samples it for turbidity and purges remaining water, leaving the turbidity sensor dry between measurements, thus greatly reducing the biofouling problem and minimizing operation costs. Our station was able to estimate suspended sediment concentrations between 0 and 6 g/L with a root mean square error (RMSE) around 5 % of the total range, which meets typical research and operational study requirements. The results showed that the monitoring station is capable of monitoring water level and turbidity for long periods without the need of cleaning the turbidity sensor, due to its purge function. We demonstrated that spatially intense measurement of turbidity within catchments and drainage networks can be achieved at a relatively low cost, which allows a better understanding of the main sources of suspended sediments and their spatial and temporal variability.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.