{"title":"有三个零的最优二进制循环码","authors":"Jinmei Fan , Xiangyong Zeng","doi":"10.1016/j.ffa.2024.102537","DOIUrl":null,"url":null,"abstract":"<div><div>Optimal cyclic codes have received a lot of attention and much progress has been made. However, little is known about optimal quinary cyclic codes. In this paper, by analyzing irreducible factors of certain polynomials over finite fields and utilizing multivariate method, three classes of optimal quinary cyclic codes with parameters <span><math><mo>[</mo><msup><mrow><mn>5</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mn>5</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>2</mn><mi>m</mi><mo>−</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>]</mo></math></span> and three zeros are presented.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"101 ","pages":"Article 102537"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal quinary cyclic codes with three zeros\",\"authors\":\"Jinmei Fan , Xiangyong Zeng\",\"doi\":\"10.1016/j.ffa.2024.102537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Optimal cyclic codes have received a lot of attention and much progress has been made. However, little is known about optimal quinary cyclic codes. In this paper, by analyzing irreducible factors of certain polynomials over finite fields and utilizing multivariate method, three classes of optimal quinary cyclic codes with parameters <span><math><mo>[</mo><msup><mrow><mn>5</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mn>5</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>2</mn><mi>m</mi><mo>−</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>]</mo></math></span> and three zeros are presented.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"101 \",\"pages\":\"Article 102537\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S107157972400176X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107157972400176X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Optimal cyclic codes have received a lot of attention and much progress has been made. However, little is known about optimal quinary cyclic codes. In this paper, by analyzing irreducible factors of certain polynomials over finite fields and utilizing multivariate method, three classes of optimal quinary cyclic codes with parameters and three zeros are presented.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.