{"title":"调制空间中高阶非线性薛定谔方程的全局拟合性","authors":"X. Carvajal , P. Gamboa , R. Santos","doi":"10.1016/j.jmaa.2024.128985","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the initial value problem (IVP) associated with a higher order non-linear Schrödinger (h-NLS) equation<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><mi>i</mi><mi>a</mi><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>u</mi><mo>+</mo><mi>b</mi><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mi>u</mi><mo>=</mo><mn>2</mn><mi>i</mi><mi>a</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mn>6</mn><mi>b</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mi>u</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>R</mi><mo>,</mo></math></span></span></span> with given data in the modulation space <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. Using ideas from Killip, Visan, Zhang, Oh and Wang, we prove that the IVP associated with the h-NLS equation is globally well-posed in the modulation spaces <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> for <span><math><mi>s</mi><mo>≥</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span> and <span><math><mi>p</mi><mo>≥</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 128985"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness for the higher order non-linear Schrödinger equation in modulation spaces\",\"authors\":\"X. Carvajal , P. Gamboa , R. Santos\",\"doi\":\"10.1016/j.jmaa.2024.128985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the initial value problem (IVP) associated with a higher order non-linear Schrödinger (h-NLS) equation<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><mi>i</mi><mi>a</mi><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>u</mi><mo>+</mo><mi>b</mi><msubsup><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mi>u</mi><mo>=</mo><mn>2</mn><mi>i</mi><mi>a</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mn>6</mn><mi>b</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mi>u</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>R</mi><mo>,</mo></math></span></span></span> with given data in the modulation space <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. Using ideas from Killip, Visan, Zhang, Oh and Wang, we prove that the IVP associated with the h-NLS equation is globally well-posed in the modulation spaces <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> for <span><math><mi>s</mi><mo>≥</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span> and <span><math><mi>p</mi><mo>≥</mo><mn>2</mn></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 128985\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009077\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009077","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global well-posedness for the higher order non-linear Schrödinger equation in modulation spaces
We consider the initial value problem (IVP) associated with a higher order non-linear Schrödinger (h-NLS) equation with given data in the modulation space . Using ideas from Killip, Visan, Zhang, Oh and Wang, we prove that the IVP associated with the h-NLS equation is globally well-posed in the modulation spaces for and .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.