细菌生长的随机模型,表现出分阶段生长、不同步、饱和和持续性

IF 1.9 4区 数学 Q2 BIOLOGY
Eugene B. Postnikov , Anant Pratap Singh , Alexander V. Sychev , Anastasia I. Lavrova , Vineet Kumar Singh
{"title":"细菌生长的随机模型,表现出分阶段生长、不同步、饱和和持续性","authors":"Eugene B. Postnikov ,&nbsp;Anant Pratap Singh ,&nbsp;Alexander V. Sychev ,&nbsp;Anastasia I. Lavrova ,&nbsp;Vineet Kumar Singh","doi":"10.1016/j.mbs.2024.109322","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a model of population growth based on the stochastic variation of the population size-controlled duplication of bacterial cells. It is shown that the proper choice of the control function allows for reproducing a variety of regimes: a logistic growth with saturation, a hindered growth typical for persistent bacterial systems, and a linear population growth detected for some mycobacterial populations. When supplied with the rectangular function having the width equal to the generation time, this approach represents the solution generalizing Rubinow’s age-maturity model reproducing systems with desynchronization and saturation. The model’s plausibility is confirmed by the direct comparison with real data for the growth of <em>M. tuberculosis</em> populations obtained with the BACTEC MGIT system under different conditions of growth synchronization.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"378 ","pages":"Article 109322"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stochastic model for the bacterial growth exhibiting staged growth, desynchronization, saturation and persistence\",\"authors\":\"Eugene B. Postnikov ,&nbsp;Anant Pratap Singh ,&nbsp;Alexander V. Sychev ,&nbsp;Anastasia I. Lavrova ,&nbsp;Vineet Kumar Singh\",\"doi\":\"10.1016/j.mbs.2024.109322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a model of population growth based on the stochastic variation of the population size-controlled duplication of bacterial cells. It is shown that the proper choice of the control function allows for reproducing a variety of regimes: a logistic growth with saturation, a hindered growth typical for persistent bacterial systems, and a linear population growth detected for some mycobacterial populations. When supplied with the rectangular function having the width equal to the generation time, this approach represents the solution generalizing Rubinow’s age-maturity model reproducing systems with desynchronization and saturation. The model’s plausibility is confirmed by the direct comparison with real data for the growth of <em>M. tuberculosis</em> populations obtained with the BACTEC MGIT system under different conditions of growth synchronization.</div></div>\",\"PeriodicalId\":51119,\"journal\":{\"name\":\"Mathematical Biosciences\",\"volume\":\"378 \",\"pages\":\"Article 109322\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556424001822\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424001822","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一个基于细菌细胞数量控制复制的随机变化的种群增长模型。结果表明,适当选择控制函数可以重现各种状态:饱和的对数增长、持久性细菌系统中典型的受阻增长,以及在某些霉菌种群中检测到的线性种群增长。当提供宽度等于生成时间的矩形函数时,这种方法代表了鲁比诺年龄-成熟度模型的一般化解决方案,该模型再现了具有非同步性和饱和性的系统。通过与 BACTEC MGIT 系统在不同生长同步条件下获得的结核杆菌种群生长的真实数据进行直接比较,证实了该模型的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stochastic model for the bacterial growth exhibiting staged growth, desynchronization, saturation and persistence
We consider a model of population growth based on the stochastic variation of the population size-controlled duplication of bacterial cells. It is shown that the proper choice of the control function allows for reproducing a variety of regimes: a logistic growth with saturation, a hindered growth typical for persistent bacterial systems, and a linear population growth detected for some mycobacterial populations. When supplied with the rectangular function having the width equal to the generation time, this approach represents the solution generalizing Rubinow’s age-maturity model reproducing systems with desynchronization and saturation. The model’s plausibility is confirmed by the direct comparison with real data for the growth of M. tuberculosis populations obtained with the BACTEC MGIT system under different conditions of growth synchronization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信