{"title":"从变阶索波列夫空间到 Lq(x)(Ω)的紧凑嵌入及其在具有变阶和变临界指数的乔夸德方程中的应用","authors":"Masaki Sakuma","doi":"10.1016/j.jmaa.2024.128999","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove the compact embedding from the variable-order Sobolev space <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>,</mo><mi>p</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> to the Nakano space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> with a critical exponent <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> satisfying some conditions. It is noteworthy that the embedding can be compact even when <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> reaches the critical Sobolev exponent <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. As an application, we obtain a nontrivial solution of the Choquard equation<span><span><span><math><msubsup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>p</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mo>⋅</mo><mo>)</mo></mrow><mrow><mi>s</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mo>⋅</mo><mo>)</mo></mrow></msubsup><mi>u</mi><mo>+</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mrow><mo>(</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mfrac><mrow><mo>|</mo><mi>u</mi><mo>(</mo><mi>y</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>r</mi><mo>(</mo><mi>y</mi><mo>)</mo></mrow></msup></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>α</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>α</mi><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mrow></mfrac><mi>d</mi><mi>y</mi><mo>)</mo></mrow><mo>|</mo><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>r</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mspace></mspace><mrow><mtext>in </mtext><mi>Ω</mi></mrow></math></span></span></span> with variable upper critical exponent in the sense of Hardy-Littlewood-Sobolev inequality under an appropriate boundary condition.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 128999"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact embedding from variable-order Sobolev space to Lq(x)(Ω) and its application to Choquard equation with variable order and variable critical exponent\",\"authors\":\"Masaki Sakuma\",\"doi\":\"10.1016/j.jmaa.2024.128999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we prove the compact embedding from the variable-order Sobolev space <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>,</mo><mi>p</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> to the Nakano space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> with a critical exponent <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> satisfying some conditions. It is noteworthy that the embedding can be compact even when <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> reaches the critical Sobolev exponent <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. As an application, we obtain a nontrivial solution of the Choquard equation<span><span><span><math><msubsup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>p</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mo>⋅</mo><mo>)</mo></mrow><mrow><mi>s</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mo>⋅</mo><mo>)</mo></mrow></msubsup><mi>u</mi><mo>+</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mrow><mo>(</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mfrac><mrow><mo>|</mo><mi>u</mi><mo>(</mo><mi>y</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>r</mi><mo>(</mo><mi>y</mi><mo>)</mo></mrow></msup></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>α</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>α</mi><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mrow></mfrac><mi>d</mi><mi>y</mi><mo>)</mo></mrow><mo>|</mo><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>r</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mspace></mspace><mrow><mtext>in </mtext><mi>Ω</mi></mrow></math></span></span></span> with variable upper critical exponent in the sense of Hardy-Littlewood-Sobolev inequality under an appropriate boundary condition.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 128999\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009211\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009211","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Compact embedding from variable-order Sobolev space to Lq(x)(Ω) and its application to Choquard equation with variable order and variable critical exponent
In this paper, we prove the compact embedding from the variable-order Sobolev space to the Nakano space with a critical exponent satisfying some conditions. It is noteworthy that the embedding can be compact even when reaches the critical Sobolev exponent . As an application, we obtain a nontrivial solution of the Choquard equation with variable upper critical exponent in the sense of Hardy-Littlewood-Sobolev inequality under an appropriate boundary condition.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.