特征模块和群的戈伦斯坦(共)同维度

IF 0.7 2区 数学 Q2 MATHEMATICS
Ioannis Emmanouil, Olympia Talelli
{"title":"特征模块和群的戈伦斯坦(共)同维度","authors":"Ioannis Emmanouil,&nbsp;Olympia Talelli","doi":"10.1016/j.jpaa.2024.107830","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we examine the Gorenstein dimension of modules over the group algebra <em>kG</em> of a group <em>G</em> with coefficients in a commutative ring <em>k</em>. As a Gorenstein analogue of the classical case, we bound this dimension in terms of the Gorenstein dimension of the underlying <em>k</em>-module and the Gorenstein dimension of <em>G</em> over <em>k</em>. Our method is based on the notion of a characteristic module for <em>G</em>, introduced by the second author, and uses the stability properties of the Gorenstein categories. We also examine the class of hierarchically decomposable groups defined by Kropholler and use the module of bounded <span><math><mi>Z</mi></math></span>-valued functions on such a group <em>G</em> to characterize the Gorenstein flat <span><math><mi>Z</mi><mi>G</mi></math></span>-modules, in terms of flat modules, and the Gorenstein injective <span><math><mi>Z</mi><mi>G</mi></math></span>-modules, in terms of injective modules (by complete analogy with the characterization of Gorenstein projective <span><math><mi>Z</mi><mi>G</mi></math></span>-modules, in terms of projective modules, obtained by Dembegioti and the second author). It follows that, for a group <em>G</em> in Kropholler's class, (a) any Gorenstein projective <span><math><mi>Z</mi><mi>G</mi></math></span>-module is Gorenstein flat and (b) a <span><math><mi>Z</mi><mi>G</mi></math></span>-module is Gorenstein flat if its Pontryagin dual module is Gorenstein injective.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristic modules and Gorenstein (co-)homological dimension of groups\",\"authors\":\"Ioannis Emmanouil,&nbsp;Olympia Talelli\",\"doi\":\"10.1016/j.jpaa.2024.107830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we examine the Gorenstein dimension of modules over the group algebra <em>kG</em> of a group <em>G</em> with coefficients in a commutative ring <em>k</em>. As a Gorenstein analogue of the classical case, we bound this dimension in terms of the Gorenstein dimension of the underlying <em>k</em>-module and the Gorenstein dimension of <em>G</em> over <em>k</em>. Our method is based on the notion of a characteristic module for <em>G</em>, introduced by the second author, and uses the stability properties of the Gorenstein categories. We also examine the class of hierarchically decomposable groups defined by Kropholler and use the module of bounded <span><math><mi>Z</mi></math></span>-valued functions on such a group <em>G</em> to characterize the Gorenstein flat <span><math><mi>Z</mi><mi>G</mi></math></span>-modules, in terms of flat modules, and the Gorenstein injective <span><math><mi>Z</mi><mi>G</mi></math></span>-modules, in terms of injective modules (by complete analogy with the characterization of Gorenstein projective <span><math><mi>Z</mi><mi>G</mi></math></span>-modules, in terms of projective modules, obtained by Dembegioti and the second author). It follows that, for a group <em>G</em> in Kropholler's class, (a) any Gorenstein projective <span><math><mi>Z</mi><mi>G</mi></math></span>-module is Gorenstein flat and (b) a <span><math><mi>Z</mi><mi>G</mi></math></span>-module is Gorenstein flat if its Pontryagin dual module is Gorenstein injective.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924002275\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002275","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了系数在交换环 k 中的群 G 的群代数 kG 上的模块的戈伦斯坦维度。作为经典情况下的戈伦斯坦类比,我们用底层 k 模块的戈伦斯坦维度和 k 上 G 的戈伦斯坦维度来约束这个维度。我们的方法基于第二位作者提出的 G 的特征模块概念,并使用了戈伦斯坦范畴的稳定性。我们还研究了由 Kropholler 定义的可分层分解群类,并使用此类群 G 上的有界 Z 值函数模块,以平模块表征了 Gorenstein 平面 ZG 模块,以注入模块表征了 Gorenstein 注入 ZG 模块(与 Dembegioti 和第二作者以投影模块表征 Gorenstein 投影 ZG 模块的方法完全类似)。由此可见,对于 Kropholler 类中的一个群 G,(a) 任何 Gorenstein 射性 ZG 模块都是 Gorenstein 平面模块;(b) 如果一个 ZG 模块的 Pontryagin 对偶模块是 Gorenstein 注入模块,那么这个 ZG 模块就是 Gorenstein 平面模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characteristic modules and Gorenstein (co-)homological dimension of groups
In this paper, we examine the Gorenstein dimension of modules over the group algebra kG of a group G with coefficients in a commutative ring k. As a Gorenstein analogue of the classical case, we bound this dimension in terms of the Gorenstein dimension of the underlying k-module and the Gorenstein dimension of G over k. Our method is based on the notion of a characteristic module for G, introduced by the second author, and uses the stability properties of the Gorenstein categories. We also examine the class of hierarchically decomposable groups defined by Kropholler and use the module of bounded Z-valued functions on such a group G to characterize the Gorenstein flat ZG-modules, in terms of flat modules, and the Gorenstein injective ZG-modules, in terms of injective modules (by complete analogy with the characterization of Gorenstein projective ZG-modules, in terms of projective modules, obtained by Dembegioti and the second author). It follows that, for a group G in Kropholler's class, (a) any Gorenstein projective ZG-module is Gorenstein flat and (b) a ZG-module is Gorenstein flat if its Pontryagin dual module is Gorenstein injective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信